• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 13
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Étale equivalence relations and C*-algebras for iterated function systems

Korfanty, Emily Rose 22 December 2020 (has links)
There is a long history of interesting connections between topological dynamical systems and C*-algebras. Iterated function systems are an important topic in dynamics, but the diversity of these systems makes it challenging to develop an associated class of C*-algebras. Kajiwara and Watatani were the first to construct a C*-algebra from an iterated function system. They used an algebraic approach involving Cuntz-Pimsner algebras; however, when investigating properties such as ideal structure, they needed to assume that the functions in the system are the inverse branches of a continuous map. This excludes many famous examples, such as the standard functions used to construct the Siérpinski Gasket. In this thesis, we provide a construction of an inductive limit of étale equivalence relations for a broad class of affine iterated function systems, including the Siérpinski Gasket and its relatives, and consider the associated C*-algebras. This approach provides a more dynamical perspective, leading to interesting results that emphasize how properties of the dynamics appear in the C*-algebras. In particular, we show that the C*-algebras are isomorphic for conjugate systems, and find ideals related to the open set condition. In the case of the Siérpinski Gasket, we find explicit isomorphisms to subalgebras of the continuous functions from the attractor to a matrix algebra. Finally, we consider the K-theory of the inductive limit of these algebras. / Graduate
12

The structure of epsilon-strongly graded rings with applications to Leavitt path algebras and Cuntz-Pimsner rings

Lännström, Daniel January 2019 (has links)
The research field of graded ring theory is a rich area of mathematics with many connections to e.g. the field of operator algebras. In the last 15 years, algebraists and operator algebraists have defined algebraic analogues of important operator algebras. Some of those analogues are rings that come equipped with a group grading. We want to reach a better understanding of the graded structure of those analogue rings. Among group graded rings, the strongly graded rings stand out as being especially well-behaved. The development of the general theory of strongly graded rings was initiated by Dade in the 1980s and since then numerous structural results have been established for strongly graded rings.  In this thesis, we study the class of epsilon-strongly graded rings which was recently introduced by Nystedt, Öinert and Pinedo. This class is a natural generalization of the well-studied class of unital strongly graded rings. Our aim is to lay the foundation for a general theory of epsilon-strongly graded rings generalizing the theory of strongly graded rings. This thesis is based on three articles. The first two articles mainly concern structural properties of epsilon-strongly graded rings. In the first article, we investigate a functorial construction called the induced quotient group grading. In the second article, using results from the first article, we generalize the Hilbert Basis Theorem for strongly graded rings to epsilon-strongly graded rings and apply it to Leavitt path algebras.  In the third article, we study the graded structure of algebraic Cuntz-Pimsner rings. In particular, we obtain a partial classification of unital strongly, epsilon-strongly and nearly epsilon-strongly graded Cuntz-Pimsner rings up to graded isomorphism.
13

On C*-algebras associated to product systems

Fabre Sehnem, Camila 04 May 2018 (has links)
No description available.

Page generated in 0.0172 seconds