• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 11
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 38
  • 38
  • 13
  • 12
  • 9
  • 8
  • 8
  • 8
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Využití metod termické analýzy při studiu účinku mikrobiálních inhibitorů / Utilization of thermal analysis in the study on effects of microbial inhibitors

Bošeľová, Miriam January 2019 (has links)
This diploma thesis deals with the use of thermal analysis in the study on effects of microbial inhibitors. The main aim of this work was to determine the utilization of the method, which is mainly used in different fields of science and research. Three bacterial strains: Cupriavidus necator H16, its mutant strain Cupriavidus necator PHB-4 and Halomonas halophila, were used as model microorganisms. The inhibitory effect of levulinic acid on growth and metabolic activity was monitored by microcalorimetry. It was found that bacteria were able to adapt to levulinic acid to a certain concentration - Cupriavidus necator to 5 g/l and Halomonas halophila to 2 g/l. The thermal analysis results were compared to a conventional method, which is commonly used to study the growth of microorganisms.
12

Využití metod termické analýzy při fyziologické charakterizaci mikroorganismů / Application of thermal analysis in physiological characterization of microorganisms

Kočiová, Silvia January 2017 (has links)
This diploma thesis deals with the applicability of thermal analysis in the influence of stress factors on microorganisms. The main aim of the presented work was to design and implement a series of experiments to thest the usability of advanced methods of thermal analysis in the characterization of microorganisms. Two bacterial strains were used as model organisms: Cupriavidus necator H16 and its mutant strain Cupriavidus necator PHB-4, which differs in the ability to produce polyhydroxyalkanoates. The basic technique used thermogravimetric analysis (TGA), which was optimized and applied in the study of water transport, behavior and determination of intracellular water content with respect to the influence of the presence of intracellular PHB granules. The results of this method were subsequently supported by TEM photos.
13

Vliv magnetického pole a dalších vybraných stresorů na fyziologii mikrobiálních buněk / The effect of magnetic field and other selected stressors on physiology of bacterial cells

Mrázová, Kateřina January 2019 (has links)
This thesis deals with the effect of magnetic field and organic substances, namely benzene and p-nitrophenol, on cell of PHA producing bacteria Cupriavidus necator H16 and mutant strain Cupriavidus necator PHB4, which does not produce polyhydroxyalkanoates. Static magnetic field was generated by both permanent magnet and electromagnet. The effect of magnetic field on the growth of bacterial cells was studied using growth curves. It was found that cultivation in magnetic field and mineral medium mostly inhibits bacterial growth. Also the amount of polyhydroxyalkanoates was observed using FT-IR, flow cytometry and microscopy with fluorescent dye. Growth curves and flow cytometry were also used to study the influence of organic substances on bacterial cells. It was found that while benzene does not affect either C. necator H16 or C. necator PHB4, p-nitrophenol acts as the inhibitor of bacterial growth for both cultures. Finally the impact of p-nitrophenol on the accumulation of PHA was studied using gas chromatography.
14

Studium odolnosti bakterií vůči vybraným stresovým faktorům / Study on resistance of bacteria to selected stress factors

Miléřová, Miluše January 2016 (has links)
The aim of the master thesis was to study the effect of the accumulation of polyhydroxyalkanoates (PHA) for bacterial resistance to selected stress factors. In the theoretical part the selected stress factors, polyhydroxyalkanoates and the involvement of polyhydroxyalkanoates into stress response of bacteria were reviewed. In the experimental part we used bacteria Cupriavidus necator H16 and its mutant strain Cupriavidus necator H16/PHB-4 unable of polyhydroxybutyrate (PHB) accumulation. The resistance of above-mentioned bacterial strains against thermal and osmotic stress was tested. According to the results of the experiment, when the bacteria were exposed to three different concentrations of NaCl (50, 100 and 200 g/l) PHB accumulating strain showed a higer resistance to hyperosmotic stress than the strain unable of PHB accumulation. There was demonstrated with Raman spectroscopy that in the hyperosmotic environment induced crystallization of the intracellular PHB granules. Transmission electron microscopy indicated that strain Cupriavidus necator H16/PHB-4 is subject to plasmolysis during hyperosmotic stress. As a consequence the hyperosmomotic stress occurs to the aggregation intracellular PHB granules in strain Cupriavidus necator H16 but there is no plasmolysis or is much less intensive.
15

Avaliação do efeito da expressão heteróloga da proteorrodopsina de SAR86 em bactérias Gram-negativas na otimização da produção de hidrogênio. / Evaluation of the effect of heterologous expression of the SAR86 proteorhodopsin in gram-negative bactéria on hydrogen production optimization.

Kuniyoshi, Taís Mayumi 09 June 2015 (has links)
O aproveitamento da energia luminosa por bactérias que produzem hidrogenases poderia aumentar a eficiência do processo de produção de biohidrogênio. Neste trabalho, foi realizada a clonagem do gene que codifica a proteorrodopsina (PR) do isolado metagenômico SAR86 num plasmídeo de expressão para bactérias Gram-negativas. PR é uma proteína ligada ao cromóforo retinal, que, sob iluminação, promove o efluxo de prótons através da membrana celular. O excesso de prótons na face externa da membrana pode servir como substrato para a hidrogenase, resultando em maior eficiência na produção de hidrogênio (2H+ + 2e→ H2). O plasmídeo contendo o gene da PR foi utilizado na transformação genética das bactérias Cupriavidus necator e Escherichia coli, que produzem diversas hidrogenases. Enquanto a PR não se mostrou funcional em C. necator, na linhagem recombinante de E. coli, cultivada em presença de luz e retinal, foi obtido um aumento de até 2,17 vezes na produção de H2 em relação ao cultivo no escuro, desde que a linhagem estivesse produzindo a hidrogenase endógena HYD-4. / The utilization of light energy by hydrogenase producing bacteria could increase the efficiency of the biohydrogen production process. In the present work, the gene coding for proteorhodopsin (PR) of the SAR86 metagenomic lineage was cloned in an expression plasmid for Gram-negative bacteria. PR is an apoprotein linked to the chromophore retinal, which, upon illumination, promotes proton efflux across the cell membrane. The excess of protons on the plasma membrane surface may serve as a substrate for hydrogenases, resulting in a higher efficiency of hydrogen production (2H+ + 2e→ H2). The plasmid containing the PR gene was used to transform the Gram-negative bacteria Cupriavidus necator and Escherichia coli which produce several hydrogenases. Whereas PR did not display functionality in C. necator, in the recombinant E. coli cells, grown under illumination in the presence of retinal, an enhancement up to 2.17 fold in H2 production was found, relative to cells grown under darkness, provided that the cells were expressing the endogenous HYD-4 hydrogenase.
16

Avaliação do efeito da expressão heteróloga da proteorrodopsina de SAR86 em bactérias Gram-negativas na otimização da produção de hidrogênio. / Evaluation of the effect of heterologous expression of the SAR86 proteorhodopsin in gram-negative bactéria on hydrogen production optimization.

Taís Mayumi Kuniyoshi 09 June 2015 (has links)
O aproveitamento da energia luminosa por bactérias que produzem hidrogenases poderia aumentar a eficiência do processo de produção de biohidrogênio. Neste trabalho, foi realizada a clonagem do gene que codifica a proteorrodopsina (PR) do isolado metagenômico SAR86 num plasmídeo de expressão para bactérias Gram-negativas. PR é uma proteína ligada ao cromóforo retinal, que, sob iluminação, promove o efluxo de prótons através da membrana celular. O excesso de prótons na face externa da membrana pode servir como substrato para a hidrogenase, resultando em maior eficiência na produção de hidrogênio (2H+ + 2e→ H2). O plasmídeo contendo o gene da PR foi utilizado na transformação genética das bactérias Cupriavidus necator e Escherichia coli, que produzem diversas hidrogenases. Enquanto a PR não se mostrou funcional em C. necator, na linhagem recombinante de E. coli, cultivada em presença de luz e retinal, foi obtido um aumento de até 2,17 vezes na produção de H2 em relação ao cultivo no escuro, desde que a linhagem estivesse produzindo a hidrogenase endógena HYD-4. / The utilization of light energy by hydrogenase producing bacteria could increase the efficiency of the biohydrogen production process. In the present work, the gene coding for proteorhodopsin (PR) of the SAR86 metagenomic lineage was cloned in an expression plasmid for Gram-negative bacteria. PR is an apoprotein linked to the chromophore retinal, which, upon illumination, promotes proton efflux across the cell membrane. The excess of protons on the plasma membrane surface may serve as a substrate for hydrogenases, resulting in a higher efficiency of hydrogen production (2H+ + 2e→ H2). The plasmid containing the PR gene was used to transform the Gram-negative bacteria Cupriavidus necator and Escherichia coli which produce several hydrogenases. Whereas PR did not display functionality in C. necator, in the recombinant E. coli cells, grown under illumination in the presence of retinal, an enhancement up to 2.17 fold in H2 production was found, relative to cells grown under darkness, provided that the cells were expressing the endogenous HYD-4 hydrogenase.
17

Využití Ramanovy spektroskopie a Ramanovské pinzety k analýze a isolaci PHA produkujících bakterií / Utilization of Raman spectroscopy and Raman tweezers for analysis and isolation of PHA producing bacteria

Beránková, Barbora January 2019 (has links)
This diploma thesis deals with the study of the utilization of Raman spectroscopy and Raman tweezers for analysis and isolation of polyhydroxyalkanoates (PHA) producing bacteria. Using gas chromatography with FID detection, we determined the polyhydroxybutyrate (P(3HB)) content of the PHA biomass of bacterial strains Burkholderia cepacia, Halomonas halophila, Cupriavidus necator H16 and its mutant strain Cupriavidus necator H16/PHB-4 and Lactobacillus delbrueckii, which is not a producer of polyhydroxyalkanoates but this bactrea was selected as representative of Gram-positive bacteria. Subsequently, thanks to Raman microspectroscopy, Raman tweezers and FT-IR spectrometer in combination with Raman FT-module, we were able to confirm or disprove the presence of P(3HB) in bacteria. Furthermore, the thesis describes Cupriavidus necator H16, which is a model organism for the production of P(3HB), and his mutant strain Cupriavidus necator H16/PHB-4. The bacterial strain Cupriavidus necator H16 was cultivated in a production mineral medium of various nitrogen contents, while cultivation was also carried out in liquid Nutrient Broth. By this cultivation we were able to reach various P(3HB) content in bacterial biomass, the spectra were subsequently compared with the spectrum of the bacterial strain Cupriavidus necator H16/PHB-4. Raman spectroscopy is well used to characterize the composition of individual bacterial cells, is a fast, versatile, and virtually non-invasive tool for studying cells.
18

Dynamic metabolic studies of C. necator producing PHB from glycerol

Sun, Chenhao January 2018 (has links)
The development of human society, which is highly dependent on fossil fuels, is now facing a range of global issues, such as rising energy prices, energy security and climate changes. To successfully tackle the resultant issues, the energy transition from fossil fuels to renewable energy sources, such as solar energy, tide energy, hydroelectric power, geothermal heat and biofuels, is under way. Biodiesel, as an important type of biofuels, has been increasingly produced from vegetable oil or used cooking oil, especially in Europe. Nevertheless, considering the high production cost of biodiesel, there is still much to be done to improve the economics of biodiesel industry. Utilisation of crude glycerol, the main by-product of the biodiesel industry, to produce value-added products appears to be a promising solution. Poly(3-hydroxybutyric acid) (PHB), a biodegradable plastic, can be converted from glycerol by Cupriavidus necator DSM 545 under unbalanced growth conditions, such as nitrogen limitation. One way to enhance the batch production of PHB is to genetically engineer the strain of C. necator, which requires insights of the dynamic impact of extracellular environment on cell phenotypes. Hence in this thesis, we aim to perform metabolic modelling based on experimental measurements to gain a better understanding of the behaviour of the metabolic network of Cupriavidus necator DSM 545 and identify potential bottlenecks of the process. Initially, C. necator DSM 545 is a strain that hardly grows on glycerol, so in a preliminary study, we investigate the process by which the strain was adapted to consume glycerol through serial subcultivation. It is found that the adaptation can be achieved within 15 cell generations over three passages in basal mineral medium, and the acquired phenotype is sufficiently stable upon further passage. The study of metabolism started with the reconstruction of the cell's metabolic network, followed by a thermodynamic analysis to check the feasibility and reversibility of all the biochemical reactions included. Then the static flux balance analysis was extended and applied to analyse the shift of metabolic states during the microbial fermentation in different batch conditions. The resulting patterns of flux distribution reveal the TCA cycle to be the major competitor for PHB synthesis at the ACCoA node. Cells have the potential to enter an efficient PHB-production phase that features minimal TCA/PHB flux split ratio, and the length of the phase can be manipulated by aeration. Although low aeration rate favours optimal flux split ratio, such condition that limits respiration also limits nutrient uptake, leading to low PHB productivity overall. To identify the actual limiting factors of PHB synthesis in the system, we further performed metabolic control analysis based on the calculated flux distributions. The analysis demonstrated how the distribution of the metabolic control can vary widely, depending on the aeration conditions used and the flux split ratios. Glycerolipid pathway, glycolysis, PHB metabolism, as well as the electron transport chain are revealed to be potential engineering targets as they contribute to the great majority of the positive control of PHB flux.
19

Bioconversion of biodiesel by-products to value-added chemicals

Salakkam, Apilak January 2012 (has links)
To mitigate the problems of depleting and soaring price of fossil fuels, the production and use of renewable energy have been vigorously promoted. In Europe, the role of biologically-derived fuels and in particular biodiesel is gradually increasing in prominent. Rapeseed biodiesel is the most widely produced in Europe. As a consequence, enormous amount of by-products from production processes are being generated. Current strategies for managing these by-products (mainly rapeseed meal and crude glycerol) seem not to be economically sustainable. More efficient utilisation could add more value to the production chain which in turn would raise the competitiveness of biodiesel compared to petro-diesel. The aim of the project reported in this thesis was to study the feasibility of producing a value added product, polyhydroxybutyrate (PHB), from by-products generated from rapeseed biodiesel production processes as well as to investigate the effects of methanol, a major impurity in crude glycerol, on growth of Cupriavidus necator, a PHB-producing micro-organism.The preliminary study of C. necator growth in crude glycerol based media revealed that optimum concentration of crude glycerol was in a range 15-25 g/L. It was also found that slight changes in the carbon to nitrogen ratio of the feedstock did not significantly affect the growth while methanol at concentrations beyond 10 g/L did. A model based on a saturation equation was developed and used to successfully predict the inhibition of growth by methanol. From the developed model, mechanisms of the inhibition were proposed. The model could also be used to predict satisfactorily growth or productivity rates in other systems containing short-chain alcohols. The growth in solutions derived from rapeseed meal (designated as hydrolysate) via solid-state fermentation by Aspergillus oryzae followed by hydrolysis of the fermented solids was also studied. The biomass production was found to increase as a function of initial free amino nitrogen (FAN) concentration presented in the hydrolysate. However, at higher initial FAN concentrations, a lower conversion of nitrogen to biomass was observed. PHB production was studied using a feedstock which was a mixture of the hydrolysate and crude glycerol. Total biomass concentration reached 28.8 g/L at 120 h with 86% PHB content. PHB productivity and PHB yield on glycerol were 0.21 g/L•h and 0.32 g/g respectively. These results were comparable with those obtained when pure glycerol and synthetic crude glycerol were used, suggesting that, technically, the use of the generic rapeseed- and crude glycerol-based feedstock to produce PHB is feasible.Overall, the feasibility of producing PHB from rapeseed biodiesel by-products has been demonstrated. The satisfactory result leads to the more important outlook that the generic feedstock derived from rapeseed biodiesel by-products has the potential to be used to produce a wide range of products depending on the micro-organism used. Further development of this process to improve nutrient production efficiency as well as product yields and subsequent integration of the process into the biodiesel production process could well be an important contribution in the development of a sustainable biodiesel industry.
20

Vnitřní fluorescence bakterií Cupriavidus necator / Intrinsic fluorescence of bacteria Cupriavidus necator

Marková, Kateřina January 2018 (has links)
This thesis focuses on autofluorescence of flavins in gram-negative bacteria Cupriavidus necator H16 and its mutant strain PHB-4. The main methods used were fluorescence microscopy and flow cytometry. To confirm the presence of flavins, excitation and emission spectra of the bacterial suspension were measured, which were compared with flavin standards. In the part of testing cells without stress response, the autofluorescence of bacteria in PBS buffer and cell suspensions stained with fluorescence probe BODIPY 493/503 was measured. The ratio of short fluorescence lifetime to long autofluorescence lifetime, and its dependence on fluorescence probe was compared with previous conditions. Autofluorescence of the supernatant was measured; it was found that the relative amplitude of long lifetime was multiple times higher than in the cell. In the part devoted to the stress response, this thesis was focused on the amount of dissolved oxygen in the production medium and the effect on bacterial autofluorescence. Then differently concentrated hydrogen peroxide was used, the best results were obtained from the concentration of 100 mM in media. For comparison a combination of hydrogen peroxide with ferro-ammonium sulphate was used, but there was no big difference. Sodium azide and antimycin A were selected as substances that directly influence on bacterial respiratory chain. Both compounds affected change in the ratio of the relative amplitudes, but the distribution of these lifetimes and the autofluorescence change over time was affected only by sodium azide.

Page generated in 0.2237 seconds