• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Influences of Curing Conditions and Organic Matter on Characteristics of Cement-treated Soil for the Wet Method of Deep Mixing

Ju, Hwanik 14 July 2023 (has links)
The wet method of deep mixing constructs binder-treated soil columns by mixing a binder-water slurry with soft soil in-situ to improve the engineering properties of the soil. The strength of binder-treated soil is affected by characteristics of the in-situ soil and binder, mixing conditions, and curing conditions.The study presented herein aims to investigate the influences of curing time, curing temperature, mix design proportion, organic matter in the soil, and curing stress on the strength of cement-treated soil. Fabricated and natural soft soils were mixed with a cement-water slurry to mimic soil improved by the wet method of deep mixing. Laboratory-size samples were cured under various curing conditions and tested for unconfined compressive strength (UCS).The experimental test results showed that (1) a higher curing temperature and longer curing time generally increase the strength; (2) organic matter in cement-treated soil decrease and/or delay the strength development; and (3) curing stress affects the strength but its effect is influenced by drainage conditions. Based on the test results, strength-predicting correlations for cement-treated soil that account for various curing conditions and organic contents were proposed and validated.This research contributes to advancing the knowledge about the effects of strength-controlling factors of soil improved by cement and to improving the reliability of strength predictions with the proposed correlations. Therefore, the number of sample batches that need to be prepared and tested in a deep mixing project can be reduced, thereby saving the project's time and costs while achieving the target strength of the improved soil. / Doctor of Philosophy / The deep mixing method has gained popularity in the U.S. as a ground improvement technique since the late 1990s. This method involves blending the native soil that needs to be improved with a binder such as cement and/or lime. Two types of deep mixing methods are available, depending on how to add binder to the soil: the wet method injects a binder-water slurry, while the dry method uses a powder form of binder.The binder reacts with water and soil thereby enhancing the engineering properties of the soil. The strength of binder-treated soil is influenced by many factors: (1) characteristics of native soil and binder; (2) mixing conditions (e.g., the amount of binder added and mixing energy); and (3) curing conditions (e.g., curing time, temperature, and stress). In this dissertation, the effects of curing conditions and organic matter in the soil on the strength of cement-treated soil were investigated. Fabricated and natural soils were mixed with cement-water slurry to simulate the wet method, and the prepared samples were cured under various conditions. The strength results of cured samples showed that the characteristics of cement-treated soil are significantly affected by the amount of cement in the mixture, curing time, curing temperature, organic matter in soil, and curing stress. The test results were also used to derive correlations that account for the influences of curing conditions and organic matter.The findings and strength-predicting correlations presented in this research are expected to improve the knowledge about the deep mixing method and the reliability of strength prediction in a deep mixing project. This research, eventually, contributes to reducing time and cost of the project.
2

Formulation et étude des propriétés mécaniques d'agrobétons légers isolants à base de balles de riz et de chènevotte pour l'éco-construction / Design and mechanical properties of lightweight insulating bio-based concretes using rice husk and hemp hurd for green building

Chabannes, Morgan 26 November 2015 (has links)
L’optimisation des performances énergétiques du bâtiment et la réduction des émissions de CO2 générées par le secteur de la construction sont devenus des enjeux majeurs. Il s’agit non seulement de réduire considérablement les consommations d’énergie liées au chauffage et à la climatisation durant la période de fonctionnement des bâtiments mais aussi de choisir des matériaux à faible impact carbone en privilégiant l’utilisation de ressources renouvelables et locales. Ces dernières années ont vu naître un intérêt croissant pour les bétons de chanvre. Ces agromatériaux associent un granulat végétal issu de la tige du chanvre avec un liant minéral. Il en résulte un matériau isolant qui présente une certaine efficacité à réguler les variations de température et d’humidité. Considérés comme multifonctionnels, les bétons de chanvre constituent une alternative écologique aux enveloppes traditionnelles. Face aux matériaux à isolation répartie comme le béton cellulaire ou la brique dont l’impact carbone est élevé, les bétons de chanvre présentent l’inconvénient d’être peu résistants mécaniquement et sont de ce fait associés à une structure porteuse. Ce travail de thèse s’inscrit dans une démarche visant d’une part à diversifier la ressource végétale utilisée pour la confection des agromatériaux de construction en développant un béton innovant incorporant les balles de riz de Camargue et d’autre part à étudier certains procédés dans l’optique d’améliorer les performances mécaniques de ces matériaux après les premiers mois de cure. Le premier objectif a consisté à caractériser la balle de riz naturelle préalablement à son association avec un liant à base de chaux. Les caractéristiques propres au granulat de balles de riz se sont traduites par la fabrication d’un agrobéton moins dosé en eau et de densité apparente plus élevée que celle du béton de chanvre (en restant inférieure à 800 kg.m-3). La conductivité thermique du béton à base de balles de riz s’est montrée similaire à celle du béton de chanvre pour un ratio massique « liant/granulat (L/G) » identique. En revanche, les performances mécaniques en compression se sont révélées plus faibles pour le béton à base de balles de riz après 1 mois de cure à 20°C et 50%HR.Le second axe de travail s’est porté sur le suivi temporel des caractéristiques mécaniques et du durcissement du liant jusqu’à 10 mois de conservation soit à 20°C et 50%HR soit en conditions extérieures. Les bétons de chanvre se sont caractérisés par un gain de résistance en compression plus favorable que celui observé sur les bétons de balles de riz malgré une cinétique de durcissement du liant équivalente. Cette conservation naturelle a été comparée à une cure en carbonatation accélérée (CO2). Les résultats ont montré que ce procédé a permis d’obtenir une résistance en compression 2 mois après la fabrication des éprouvettes équivalente à celle obtenue après 10 mois de conservation à l’extérieur. Considérant que la résistance mécanique du béton à base de balles de riz est limitée par la liaison mécanique liant/particule, ce travail s’est porté également sur l’effet d’un traitement des particules à l’eau de chaux saturée. S’il s’est montré inefficace pour le béton de chanvre, il a permis d’améliorer la résistance en compression des bétons à base de balles de riz.Enfin, cette étude a traité de l’effet d’une cure humide (95%HR) et d’une élévation de température (50°C) sur le durcissement du liant et l’acquisition des résistances mécaniques à court terme. L’étude a été préalablement menée sur des mortiers de chaux. Les résultats ont montré que ce type de cure permet une très forte augmentation de la résistance mécanique du liant après 28 jours par un effet cinétique sur les réactions d’hydratation. Toutefois, ces conditions de cure ont entrainé une perturbation de la zone de transition entre le liant et la particule et par conséquent une dégradation des propriétés mécaniques des agrobétons. / The improvement of building energy efficiency and the reduction of CO2 emissions from the construction industry have become a major issue over the last years. We need to cut the energy consumption linked to heating and cooling of buildings during their operating period but also to choose materials with low carbon footprint using renewable and local resources.Hemp concretes are more and more used in green construction. These bio-based building materials consist of hemp-derived aggregates mixed with mineral binders and water. These concretes have attractive insulating properties and present some effectiveness in buffering variations of temperature and humidity in buildings. Considered as a multifunctional material, hemp concrete can offer an eco-friendly alternative to traditional building envelopes but have the disadvantage of being very low strength. Unlike cellular concrete or clay bricks, hemp concretes cannot be used as load-bearing materials but for infilling walls with a wood timber frame. The aim of this thesis work is, on the one hand, to diversify plant aggregates used for the manufacturing of bio-based concretes by developing an innovative material based on local rice husk from the Camargue area and on the other hand to investigate some processes in order to increase mechanical strength of these materials after the first months of curing. The first objective of this work was to characterize rice husks prior to incorporating them in a lime-based mix. Intrinsic features of rice husks led to the manufacturing of a new bio-based concrete designed with a lower water content and a higher apparent density than hemp concrete (by remaining below 800 kg.m-3). Thermal conductivity of rice husk concrete was comparable to that of hemp concrete for a given « binder on aggregates (B/A) » mass ratio. Nevertheless, mechanical performances in compression have proved lower for the rice husk concrete after one month of hardening at 20°C and 50%RH. The second line of the work dealt with the evolution of mechanical properties and binder hardening over time. Specimens were cured during 10 months either at 20°C and 50%RH or exposed outdoors. Hemp concrete exhibited a higher compressive strength gain over time than that achieved for rice husk concrete despite a same hardening kinetics. This curing under natural carbonation was compared to an accelerated one (CO2 curing). Accelerated carbonation provided the opportunity to obtain the same compressive after 2 months than that reached after the outdoor exposure during 10 months. Considering that compressive strength of rice husk concrete is restricted by the bonding strength between the binder and the aggregates, this work also focused on the effect of a lime-water treatment of plant aggregates. This latter was not efficient for hemp concrete but increased compressive strength of rice husk concrete. Finally, the effect of a moist curing (95%RH) and elevated temperature (50°C) on binder hardening and strength development of bio-based concretes was investigated. This aspect was also studied on lime-based mortars. The results showed that this type of curing led to a strong increase of mechanical strength for the binder after 28 days due to kinetic effects on hydration reactions. Nevertheless, these curing conditions were detrimental to the transition zone between the binder and the plant aggregates and consequently counterproductive for the mechanical performances of bio-based concretes.
3

Development and Engineering Properties of Construction Materials Made Using Melted Plastics Wastes as the Only Binding Phase

Thiam, Moussa 07 September 2021 (has links)
Modernization has brought about steady increase in the consumption of goods and services by human societies across the globe, which mostly driven by both population growth and the change of individual living standards. This, of course, leads to an ever-increasing waste production that ends up in landfills and very often as a source of pollution on natural ecosystems, especially in the low and middle-income countries where waste management is almost inexistent. The management of waste streams is a huge challenge for developed countries as well, where societal and environmental impacts are visible despite massive investments in waste management. One of the most problematic waste materials is plastic, which can remain in nature for over 100 years without degradation, leading to serious environmental concerns. As one of the most significant innovations of the 20th century, plastic is a widely used and cost-effective material for many applications. After their useful lifetimes, their management is problematic. Thus, robust and innovative approaches of managing such waste material are needed in order to mitigate the problem. One of the innovative approaches of tackling the menace cause by plastic waste is through its incorporation into the construction materials. This thesis seeks to address this problem by exploring the use of melted plastic wastes (High Density Poly Ethylene, HDPE and Low Density Poly Ethylene, LDPE) as binder in developing new construction materials (mortar with melted plastic as the only binder, MPB and Plastic Waste Crete, PWC) as an alternative to partially replace traditional concrete and mortar, or finding other engineering uses for this type of waste. Worldwide, about 190 m3 of concrete is poured every second, which translates to 6 billion m3 per year and making it, one of the most widely used manufactured materials. However, the production of concrete requires water and cement. Cement is expensive, and its production contributes to the emission of environmentally polluting gases. Replacing this binding element with recycled plastic derivatives would have significant economic and environmental benefits. In addition to the elimination of cement cost, this will result in water savings, which is especially important for areas without fresh water scarcity. Some researchers have used plastics in concrete and mortars as additives and/or replacement for fine and coarse aggregates. In addition, different types of plastics have been used in bitumen as an additive to reduce construction cost and improve sustainability by adding value to wastes materials. However, there is paucity of technical information about the use of the melted HDPE and LDPE plastic wastes as the only binding phase in concrete- or mortar-like materials. Moreover, many parameters such as preparation conditions, field variables, constituent elements, and final applications have impacts on the performance of construction materials Thus, the key objective of this PhD research is to develop the mortar with plastic binder (MPB) and PlasticWasteCrete (PWC) by using molten HDPE and LDPE plastic wastes as the only binder as well as to investigate the engineering properties of these new types of construction materials. The plastic contents of 45%, 50%, 60% and 65% and HDPE to LDPE ratios of 40/60, 50/50, and 60/40 were selected for the experimental tests. Clean river sand was used as the only aggregate for the MPB, while both sand and gravel were used for the PWC. Various tests were then performed on prepared MPB and PWC samples at different curing times from early to advanced ages to assess their engineering properties. These tests were conducted in accordance with the ASTM standards to evaluate the mechanical properties (compressive strength and splitting tensile strength), permeability and density of the MPB and PWC materials. Additional tests were carried out to analyze the products at the microstructural level (optical microscope, SEM, MIP and thermogravimetric analysis) to gain an insight into the microstructural properties of the developed materials and how that affect their engineering properties. The compressive strength tests revealed the optimal plastic content for the MPB and PWC with the best strength performance. The average compressive strength values for various optimal formulations after 28 days were found to be in the range of 9 to 18 MPa. The splitting tensile strength for the new materials from 1 to 28 days of curing time, were found to be between 1 and 5 MPa. The average hardened density of the MPB and PWC is about 2 g/cm3, which makes them lightweight material according to RILEM classification. In addition, various absorption tests (capillary and immersion) were performed on different MPB and PWC samples, and the obtained results showed that they are porous materials having lower rate of absorption than the traditional cementitious materials (mortar, concrete). This observation was supported by the results from both MIP and SEM analyses. Finally, thermogravimetric analysis provided interesting details on the thermal decomposition of the new materials, with significant changes or mass loss for these products being observed only at temperatures higher than 300°C. The findings from this study suggest MPB and PWC made with melted plastic waste as the only binder have a promising potentials for use in construction. The research conducted in this PhD study offers a good understanding of the engineering properties of the materials as well as the optimal formulations that yield best performance in terms of strength and durability. In summary, it provides useful technical information and tools on the MPB and PWC that will contribute in setting guidelines on the optimal applications of these products in the field of construction in order to have safe, durable and cost-effective structures. Résumé Avec la modernisation de nos sociétés, les habitudes ont considérablement changé, ainsi, on observe une forte consommation des biens et services, due à l’augmentation de la population et l’amélioration de leurs conditions de vie. Ce qui conduit à une augmentation considérable des quantités des déchets qui terminent leurs cycles au niveau des décharges ou dans les océans/fleuves devenant ainsi une source de source de pollution des écosystèmes naturels, surtout dans les pays à revenu faible et intermédiaire avec des systèmes défaillants ou moins performants de gestion des déchets. La gestion des flux de déchets est aussi un défi pour certains pays développés, où les impacts sociaux et environnementaux sont visibles en dépit des investissements massifs dans ce secteur. Parmi ces déchets, nous avons les plastiques, l’une des innovations du 20e siècle avec des qualités versatiles et coût faible, se trouve partout dans nos vies quotidiennes. Après leur utilisation, les plastiques deviennent des déchets qui peuvent rester dans la nature plus de 100 ans sans aucune dégradation, avec des conséquences néfastes sur l’Homme et l’environnement. Ainsi, une approche robuste et innovante de gestion de ces déchets est nécessaire afin d'atténuer leurs impacts. L'une des approches innovantes pour réduire l’impact causé par les déchets plastiques consiste à les incorporer dans les matériaux de construction. Ainsi, le problème est abordé dans cette thèse en développant des technologies permettant de recycler les plastiques fondus comme liant dans les nouveaux matériaux de construction (MPB et PWC), afin d’offrir une alternative pour remplacer partiellement le béton / mortier traditionnel. Le béton est l’un des matériaux les plus utilisés au monde, avec environ 190 m3 coulés chaque seconde, correspondant à 6 milliards de m3 par an. Cependant, la production de béton nécessite de l'eau et du ciment. Le ciment coûte cher et sa production contribue à l'émission de gaz polluants l'environnement. Le remplacement d'une partie du béton traditionnel par un matériau à base des déchets plastique aura des avantages économiques, sociaux et environnementaux importants. Allant dans ce sens, certains chercheurs ont utilisé les plastiques dans le béton et le mortier comme additifs et / ou substituts des matériaux granulaires tels que le sable et le gravier. Aussi, différents types de plastiques ont été utilisé dans le bitume comme additif pour réduire les coûts de construction et améliorer la durabilité, ainsi contribuer à donner de la valeur aux déchets. Cependant, jusqu'à présent, il existe peu d’informations techniques sur l'utilisation de déchets plastiques (HDPE et LDPE) fondus comme seuls liants pour développer de nouveaux types de matériaux de construction. En plus, plusieurs facteurs (les conditions de préparation, les éléments constitutifs, les applications finales, etc.) ont un impact sur les caractéristiques des matériaux de construction. Ainsi, l'objectif de cette recherche doctorale est de développer des nouveaux matériaux de construction (MPB et PWC) en utilisant les déchets plastiques fondus (HDPE et LDPE) comme seul liant, puis déterminer les propriétés caractéristiques de ces matériaux afin de trouver la formulation optimale conduisant à la meilleure résistance. En plus de l'élimination du coût du ciment, cette technologie permet aussi de faire des économies d'eau, bénéfique surtout pour les zones avec des difficultés d'accès à l’eau potable. Cela contribuera à la réduction des coûts de la construction en utilisant les produits innovants comme alternative au béton / mortier conventionnel. Un vaste programme expérimental, comprenant des tests à petite et grande échelle, a été développé afin d'atteindre les objectifs de cette étude de doctorat. La campagne expérimentale a comporté différentes étapes comprenant la sélection des matériaux, la détermination de la formulation optimale et les conditions appropriées pour la préparation des matériaux susmentionnés. Par la suite, pour une meilleure compréhension du comportement technique et des propriétés du produit final, divers tests ont été effectué sur les matériaux préparés à différents temps de durcissement. Ces tests ont été menés conformément aux normes ASTM pour évaluer les propriétés mécaniques (résistance à la compression et à la traction), la perméabilité et la densité des nouveaux matériaux. Les expériences ont été approfondies en analysant les produits au niveau microstructural (microscope optique, SEM, MIP et analyse thermique) pour avoir un aperçu des propriétés microstructurales des matériaux développés et essayer de comprendre les relations avec leur comportement mécanique. Les essais de compression ont permis de trouver la teneur en plastique optimale pour les matériaux (MPB et PWC) avec les meilleures valeurs de résistance. Les résistances moyennes à la compression à 28 jours pour diverses formulations étaient comprises entre 9 et 18 MPa. La résistance à la traction par fendage des nouveaux matériaux entre 1 et 28 jours se situait entre 1 et 5 MPa. La densité moyenne du béton et mortier écologique est proche de 2 g / cm3, ils peuvent donc être considérés comme des matériaux légers selon la classification RILEM. De plus, divers tests d'absorption (capillaire et par immersion) ont été réalisé sur différents échantillons de MPB et PWC, les résultats obtenus ont montré qu'il s'agit de matériaux poreux ayant un taux d'absorption plus faible que les matériaux traditionnels contenant du ciment. Plusieurs analyses microstructurales ont été réalisées sur différents échantillons des nouveaux produits (MPB et PWC) et les matériaux cimentaires traditionnels ont été utilisés pour renforcer notre compréhension. Enfin, l'analyse thermique a fourni des détails intéressants sur la décomposition thermique de ces nouveaux matériaux ; des changements significatifs avec une perte de masse considérable ont été observés seulement pour des températures supérieures à 300 ° C. Les résultats de ces essais permettent d'acquérir une bonne compréhension des propriétés techniques des nouveaux matériaux (MPB et PWC) ainsi que de déterminer les teneurs optimales en plastique conduisant aux meilleures performances en termes de résistance et de durabilité. Ainsi, les recherches menées dans cette étude de doctorat fournissent des informations techniques et des outils utiles sur le MPB et le PWC; et contribueront à installer des bases pour guider les applications optimales de ces nouveaux produits dans le domaine de la construction afin d'avoir des structures sûres, durables et rentables.
4

Studium účinnosti polymerní přísady EVA v závislosti na ošetřovacích podmínkách malty / Study of the Effectiveness of Copolymer EVA Depending on Storage Conditions of Mortar

Hlawiczka, Jakub January 2016 (has links)
The Diploma thesis is adressing the issue of polymer-modified mortars (PMM) and theirs properties in dependence on curing conditions. The reasons of using polymer additives and some selected applications of PMM are described in theoretical part of this work. Cementitious composite (mortar) hardening is especially focused on mechanism of formation co-matrix system based on cement hydration products and polymer film in dependence on curing conditions. The knowledge of interaction of cement and ethylene-vinyl acetate (EVA) copolymer is presented in the latest paragraphs of theoretical work. Following practical part presents influence of EVA to physical and mechanic properties of PMM in dependence of dosage polymer additive and exogenous factors. The study of microstructure was investigated by scanning electron microscope and high-pressure mercury porosimetry. Tests and investigations are described and evaluated.
5

Vliv provzdušnění a ošetřování na vývoj modulu pružnosti betonu / Influence of Air Entrainment and Curing on Development of Elastic Modulus of Concrete

Bartulíková, Radka January 2013 (has links)
Master's thesis deals with influence of various factors on the concrete compressive strength and modulus of elasticity. This work concentrates mainly on the influence of early curing and air entrainment of concrete. One part of this work is the evaluation of laboratory measurement, which was carried out on cubes of standard and norm prisms. The development of elastic moduli was monitored in time to 730 days of age with respect to air entrainment and curing conditions. The second part of the experiment deals with a comparison of theoretical creep curves depending on the value of the modulus of elasticity based on different standards. Again, the air entrainment effect and influence of initial conditions are reflected.

Page generated in 0.3202 seconds