• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 4
  • 3
  • 2
  • 2
  • Tagged with
  • 38
  • 38
  • 28
  • 27
  • 20
  • 20
  • 16
  • 16
  • 15
  • 13
  • 12
  • 11
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Univerzální přesné usměrňovače s proudovými aktivními prvky / Universal precision rectifiers with current active elements

Ryšavý, Lukáš January 2013 (has links)
In this thesis new circuit solutions of universal precision rectifiers with current active elements are proposed. Based on the knowledge of current active elements, universal precision rectifiers and adverse impacts on these circuits new circuit solutions are proposed. These circuits are then simulated and compared with the known circuits of precision rectifiers. In concusion two original circuits and two proposed circuit solutions based on original ones are implemented, their properties are experimentally measured and their function are verified. The main active element in the original circuit are the OPA or THS, the proposed circuits are used the OPA and THS and the universal current conveyor, which offers a wide range of application use and realization of different variations of active current elements.
32

Návrh elektronicky rekonfigurovatelných filtračních struktur s moderními aktivními prvky / Design of electronically reconfigurable filtering structures with modern active elements

Prát, Marek January 2018 (has links)
The aim of master's thesis was design of electronically reconfigurable filters. Adjustability of pole frequency or quality factor is possible. First part of thesis deals with theoretical analysis of filters, their operation modes, design of frequency filters using Signal-Flow graph method and parasitic analysis. The next part describes active elements used in thesis. In a third part, three reconfigurable filters are described and designed and their simulations and parasitic analysis are made. Last part deals with filter design in EAGLE and experimental measurement.
33

Syntéza elektronicky rekonfigurovatelných kmitočtových filtrů / Synthesis of the electronically reconfigurable frequency filters

Michalička, Filip January 2020 (has links)
This diploma thesis deals with design of reconection-less electronically reconfigurable filter structures which have single input and single output using unconventional active elements, which have ability to adjust one of their parameter e.g. gain or transconductance. The first part describes basic parameters of frequency filters, the division of filters by frequency transfer response and used circuit elements, their operational modes, the principle of reconnection-less electronically reconfiguration and the circuit design method MUNV. Second part describes all active elements used in the proposal of filters, their properties and the implementation using existing transistor-level models. The third part contains the design of three reconnection-less electronically reconfigurable filters and the simulations results obtained from simulation programs OrCAD Capture and PSpice. The obtained results were compared with theoretical behaviour. This part also contains results of these analyses: sensitivity, parasitic, Monte Carlo and temperature to determine the behaviour in varied cases.
34

Transformační návrhová metoda filtrů vycházející z pasivních struktur / Transform-based filter design technique based on passive structures

Venclovský, Martin January 2009 (has links)
This diploma thesis deals with transformation of passive elements in filter structures onto substitutes with new active element CFTA. A basic characteristic, types of filters, their frequency characteristics and a form of transfer functions are listed in an introduction. After it is introduced a development of signal flow graphs, single type of graphs and their modifications. There is specified the method Mason-Coates graphs which proves as optimal for analysis circuits. There are listed rules for a correct evaluation and make-up the graphs. Further are described active elements CFTA, CDTA and a current conveyor. There are defined active substitutes to a floating and grounded inductance, a floating capacitor and also a floating and grounded resistor in this thesis. Here, there are also designed substitutes to parallel combinations of floating passive elements. All substitutes use CFTA as an active element and the grounded capacitor as a passive element of substitute. There are presented forms of M-C graphs, transfer functions and equations for calculation passive elements of substitute at created equivalents. Functionality of designed substitutes is always verified on second order passive filters by the help of a PC simulation. There are tabular listed defined equivalents with corresponding signal graphs, transfer functions and equations for calculation capacitor of substitute are here tabular listed too. In this work there are defined two ways of connecting defined substitutes within the scope of one circuit that can be used as a simple connection or integration bounded elements. In the case of usage of the integration bounded elements it is possible to reduce total number used active elements. The usage defined substitutions are verified by way of both methods on known higher order passive frequency filter structures. Third order low pass filter is here realized and scaled in frequency scope from 100 Hz to 100 MHz.
35

Návrh nových aktivních filtrů pomocí grafů signálových toků / Design of new active filters, using signal flow graphs

Jašek, František January 2010 (has links)
This master’s thesis describes the design of the frequency filters by the help of the graph of the signal flows. There are defined by modern components like GVC (Generalized Voltage Conveyor), GCC (Generalized Current Conveyor), CF (Current Follower), DO-CF (Dual-Output Current Follower), OTA (Operational Transconductance Amplifier), BOTA (Ballanced Operational Transconductance Amplifier) and CFTA (Current Follower Transconductance Amplifier), the graphs of the signal flows, which describe their activity in the thesis. In the other part of the thesis is illustrated the procedure of the design of the frequency filters by the help of the graphs of the signal flows. For the concrete design was selected in the first case as the active component double output current follower and in the second case the CFTA. There are noted all designed circuits of the frequency filters also their characteristic equations in this thesis. The activity of the selected circuits was remitted to the analysis in the simulation program called PSpice. Because the active components, with which was engaged in the design of the filter which doesn’t exist in the real form, that is why the UCC, which is sufficing for attestation of the function of the circuit, was used for the simulation. The simulation was implemented in the frequency range 10 Hz to 10 MHz.
36

Kmitočtové filtry s proudovými aktivními prvky / Frequency Filters with Current Active Elements

Jeřábek, Jan January 2011 (has links)
This doctoral thesis is focused mainly on research of new current active elements and their applications in frequency filters suitable for current-mode. Work is focused on design of new filtering structures suitable for traditional single-ended signal processing and also on structures suitable for fully-differential applications. The thesis contains three designed general conceptions of KHN-type second-order filters. Adjustability of quality factor and pole frequency is provided by controllable current amplifiers that are placed properly in designed structures. Structures also contain second-generation current conveyors, multiple-output current followers, transconductance amplifiers and their fully-differential equivalents. There are lot of possible solutions that could be obtained from general structures, some of them are presented in the work. The thesis also presents several multifunctional and also single-purpose filtering structures of second-order and two variants of n-th order synthetic elements which are suitable to realize higher order filters both in single ended and fully differential type. In each case, functionality of new solutions is verified by simulations and in several cases also by real measurement.
37

Behaviorální modely aktivních prvků s nezávislým víceparametrovým elektronickým řízením / Behavioral models of active elements with possibility of independent multi-parameter control

Novotný, Jakub January 2016 (has links)
This thesis is focused on behavioral modelling of active elements with independent multi-parameter electronic control using comercially available components. In a first part of the thesis, CVDIBA, CVDOBA, CVCC and OC elements are discussed. The functionality is verified by simulations using OrCAD PSpice. Used components are diamond transistor OPA860, variable gain amplifier LMH6505, differencing amplifier AD830, low distortion differential driver AD8138, current conveyor EL2082 and current mode four quadrant multiplier EL4083. Four active elements are further built on PCB and measured. Some applications like low pass filter, high pass filter, all pass filter and reconfigurable filter.
38

Syntéza a analýza obvodů s moderními aktivními prvky / Synthesis and Analysis of Circuits with Modern Active Elements

Koton, Jaroslav January 2009 (has links)
The dissertation thesis deals with the synthesis and design of active frequency filters using current (CC) and voltage (VC) conveyors, or current active elements CMI (Current Mirror and Inverter), MCMI (Multi-output CMI) and PCA (Programmable Current Amplifier). As introduction, these active elements are described as suitable for the design of the circuits working in the voltage-, current,- ,and mixed-mode, or in pure current-mode speaking about the current active elements. The new frequency filter structures presented in this thesis using the above mentioned active elements were designed by the generalized autonomous circuit method, transformation cells and signal flow-graph theory. The generalized autonomous circuit method is based on full admittance network to which generalized active elements are connected. The described admittance networks can be used for other active elements. The next method is based on the transformation cells that subsequently are used for the design of synthetic elements with higher-order imittance. Original conditions for the design of such blocks are given that lead to maximal simplicity of the final structure with minimal number of passive and active elements. For effective usage of another method utilizing signal flow-graphs, new reduced graphs of chosen active elements are given. Their usage leads to direct function blocks synthesis with required properties. The functionality and behavior of chosen circuit solutions have been verified by analyses in simulation programs. The active elements were simulated by the universal current conveyor (UCC) or universal voltage conveyors (UVC) that were designed at the FEEC, BUT in cooperation with AMI Semiconductor Design Centre Brno with the CMOS 0.35 m technology. These active elements have been also used for the realization of chosen filter structures. The experimental measurements were performed in the in the frequency range 10 KHz to 100 MHz.

Page generated in 0.0905 seconds