• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • Tagged with
  • 8
  • 8
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Contribution à la modélisation du procédé de refusion sous laitier éléctroconducteur / Simulation of the ESR process for special steels and Ni-based superalloys

Hugo, Mathilde 27 June 2014 (has links)
Le procédé de refusion sous laitier électroconducteur (ESR =Electro Slag Remelting) permet de produire des alliages à haute valeur ajoutée utilisés pour des applications critiques. Les mesures in-situ sur les fours industriels étant coûteuses, la simulation numérique est essentielle à la maitrise et à la compréhension de ce procédé complexe. L’Institut Jean Lamour a développé depuis plusieurs années un modèle 2D axisymétrique qui permet de simuler la refusion d’une électrode consommable au sein d’une lingotière considérée comme totalement isolée électriquement du reste du système. Sont alors décrit en régime transitoire les transferts couplés de chaleur et de quantité de mouvement, ainsi que le passage du courant électrique dans le laitier et le lingot lors de la croissance et de la solidification de ce dernier. Les connaissances acquises au cours des dernières années sur le procédé ESR remettent en cause l’hypothèse d’isolation électrique du moule au cours de la refusion. L’objet de cette thèse est d’intégrer et d’étudier la possibilité de passage de courant entre le laitier et la lingotière au cours de la refusion. Un premier modèle a été développé. Il consiste en un calcul électromagnétique complet dans l'ensemble du système pour une géométrie simplifiée. Il a permis de simplifier la mise au point du modèle global, tout en fournissant de premiers résultats. Par la suite, un modèle totalement couplé a été finalisé puis les modifications du code ont fait l’objet de validations avec des mesures expérimentales. Des études de sensibilité ont été menées pour tester l’influence des propriétés du laitier et des paramètres opératoires sur la qualité du lingot final. / The ElectroSlag Remelting process (ESR) is widely used to produce high added value alloys for critical applications (aerospace industry, nuclear plants, etc.). Trial-and-error based approaches being expensive, numerical simulation is fundamental to improve the knowledge and the understanding of this complex process. The Institut Jean Lamour has been developing for several years a numerical code to simulate the melting of a consumable electrode, supposedly perfectly cylindrical, within a mold assumed to be perfectly electrically insulated from the electrode-slag-ingot system. Based on these assumptions, the 2-D axisymmetrical transient-state numerical model accounts for electromagnetic phenomena and coupled heat and momentum transfers, to simulate the continuous growth of the electroslag remelted ingot and the solidification of the metal and slag. Recent studies on the ESR process are challenging the insulated mold hypothesis. Therefore, the main objective of the thesis is to acknowledge and study the existence of a mold current during an ESR remelting. A first model has been set-up, aimed to simulate the electromagnetic phenomena in the whole system for a simplified geometry. The possibility of the existence of such a mold current was confirmed. Based on this work, a fully-coupled model has then been developed and the results have been compared with experimental data to check the validity of the modifications. The influence of slag properties and operating parameters on the final quality of the ingot has been tested.
2

Optimalizace tvaru paralelních proudovodných drah odpojovače / DISCONNECTOR PARALLEL CURRENT PATHS OPTIMIZATION

Görig, Tomáš January 2015 (has links)
The objective of this master´s thesis is diagnostic the actual disconnector current path that is unevenly stressed by nominal current. The most stressed parts are excessively heated. In next part are projected a few options to optimize the current path. The options are verified by simulation. The best option is recommended to the submitter.
3

Výpočet dynamických sil jističe 250A / Calculation of electrodynamic forces in 250 A circuit breaker

Görig, Michal January 2015 (has links)
This master’s thesis deals with the calculation of electrodynamic forces breaker BD250NE305. Main tasks in this semester project is to study the theoretical analysis of individual parts specified breakers. Processing theoretical analysis of these forces. Creating a 3D model current path and sheets quenching chamber single phase circuit breaker in Autodesk Inventor Professional 2012. Another challenge is the subsequent export the model into the simulation program ANSYS Maxwell. After simulation, the specified conditions must be processed and the results of the present work is to evaluate.
4

Výpočet dynamických sil jističe 630A / Calculation of electrodynamic forces in 630 A circuit breaker

Staněk, Pavel January 2016 (has links)
The aim of this thesis is to simulate the action of electrodynamic forces on current carrying path and a movable contact of the circuit breaker OEZ Modeion BH 630NE. For the calculation there is used the simulation program Ansys Maxwell. The first part is devoted to theoretical analysis of electromagnetic forces on a conductor in a magnetic field. Further I discuss the constructional design of the circuit breaker itself, especially the current path and the contact mechanism. In the next part there is (with using program Autodesk Inventor) created a simplified 3D model of the current path including an arc chamber. With program Ansys Maxwell then there is performed simulation of the acting of forces in each mode. This is magnetostatic and transient analysis for symmetrical and asymmetrical flow of the fault current. In conclusion the results obtained are evaluated and processed in the tabular way.
5

Teplotní profil výkonového spínacího přístroje nízkého napětí pro různé provozní stavy / The temperature profile of the power switching device of low voltage for different operating conditions

Mejzlík, Tomáš January 2015 (has links)
The heat generated in a circuit breaker can be transmitted in two ways: Either through metal parts of current path to conductors outside of device or through plastic parts or air of chassis. The accuracy of the simulation depends on the accuracy of the 3D model and all his parts and it also depends on precise definition of materials with precise definition of electrical and thermal parameters. Electrical circuit breaker has various source of the heat which results in raising temperature of the device above the level of environment. Heat sources are: 1) Joule’s loss of the circuit breaker current path. 2) Heat loss in a bimetal, which is used for thermal release. 3) Resistivity of contacts. This thesis deals with static state of thermal analysis so the sources do not include transient heat source for switching OFF and switching ON. Electrical circuit breakers are made in smaller and smaller forms however their electrical parameters are not decreasing with size. There is logical conclusion that there is more heat on the same unit size which makes thermal analysis of circuit breaker one of the most important part of development.
6

Bilance elektrodynamických sil působících na kontakt elektrického přístroje. / Electrodynamic forces acting on moving contact of electrical apparatus

Šic, Pavel January 2016 (has links)
This master’s thesis is focused on calculation, simulation and experimental verification of electrodynamic forces acting upon movable contact piece of MCCB and experimental current carrying path. A short description of low voltage circuit breakers is briefly discussed in first chapter. Second chapter is focused upon contact system analysis of particular MCCB with thermomagnetic trigger. A hardness of contact materials is briefly described. A detailed analytical calculations were used to determine electrodynamic forces in MCCB. A FEM simulation in ANSYS Maxwell was carried out for comparison with analytical results. An experimental apparatus was designed and built for verification of constriction repulsion force, so called Holm’s force. A series of measurements is subsequently performed on proposed apparatus and results are compared with results from previous chapters.
7

Simulace dějů v elektrických přístrojích / Simulation of phenomena in switchgears

Daševič, Ladislav January 2009 (has links)
Aim of the thesis is to explain the issue of forces acting in circuit breaker caused by magnetic fields induced by short-circuit current. This thesis is focused on force affecting in concrete system of a circuit breaker. The given circuit breaker is made by OEZ Letohrad, the type Modeion BD250. In the thesis the way of creating 3-D model is shown for the purpose of creating numeric simulation by ANSYS 11. The next approach of the thesis is the description of applicating the results for DC and AC current calculations. The noted calculation is made in the programme MATLAB 6.5. The solutions are mentioned at calculations both in the graphic form and numeric specifications. Visualisation was made by using GIF graphic system animation. The individual pictures processing was done in the programme UNLEAD GIF ANIMATOR 5.
8

Mathematical modelling of primary alkaline batteries

Johansen, Jonathan Frederick January 2007 (has links)
Three mathematical models, two of primary alkaline battery cathode discharge, and one of primary alkaline battery discharge, are developed, presented, solved and investigated in this thesis. The primary aim of this work is to improve our understanding of the complex, interrelated and nonlinear processes that occur within primary alkaline batteries during discharge. We use perturbation techniques and Laplace transforms to analyse and simplify an existing model of primary alkaline battery cathode under galvanostatic discharge. The process highlights key phenomena, and removes those phenomena that have very little effect on discharge from the model. We find that electrolyte variation within Electrolytic Manganese Dioxide (EMD) particles is negligible, but proton diffusion within EMD crystals is important. The simplification process results in a significant reduction in the number of model equations, and greatly decreases the computational overhead of the numerical simulation software. In addition, the model results based on this simplified framework compare well with available experimental data. The second model of the primary alkaline battery cathode discharge simulates step potential electrochemical spectroscopy discharges, and is used to improve our understanding of the multi-reaction nature of the reduction of EMD. We find that a single-reaction framework is able to simulate multi-reaction behaviour through the use of a nonlinear ion-ion interaction term. The third model simulates the full primary alkaline battery system, and accounts for the precipitation of zinc oxide within the separator (and other regions), and subsequent internal short circuit through this phase. It was found that an internal short circuit is created at the beginning of discharge, and this self-discharge may be exacerbated by discharging the cell intermittently. We find that using a thicker separator paper is a very effective way of minimising self-discharge behaviour. The equations describing the three models are solved numerically in MATLABR, using three pieces of numerical simulation software. They provide a flexible and powerful set of primary alkaline battery discharge prediction tools, that leverage the simplified model framework, allowing them to be easily run on a desktop PC.

Page generated in 0.0431 seconds