• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Densificabilidad: caracterizaciones, extensiones y aplicaciones

Redtwitz, Dennis Alexander 24 April 2015 (has links)
En este trabajo, introducimos los conjuntos densificables, una nueva clase de subconjuntos de espacios métricos en los que problemas de optimización global e integración múltiple se pueden reducir a problemas unidimensionales, resolviendo el mismo problema sobre ciertas curvas (llamadas curvas alfa-densas). Para realizar el estudio de los conjuntos densificables en espacios métricos, introducimos las nociones de densificador, pseudo-densificabilidad, aproximabilidad por caminos y aproximabilidad numerable por caminos, que proporcionan propiedades topológicas y métricas de dichos conjuntos. Estos conceptos han permitido caracterizar la clase de subconjuntos densificables de los espacios euclídeos con interior no vacío. Extendemos el concepto de densificabilidad a espacios topológicos en general, introduciendo las nociones de densificabilidad simple, condicional, secuencial y topológica. De esta manera, problemas de optimización global pueden ser simplificados aun en ausencia de una métrica. Además, probamos que una de estas extensiones es óptima, en el sentido que ninguna condición más débil permite la mencionada simplificación utilizando una sucesión prefijada de curvas. Asimismo, comparamos la densificabilidad topológica con la extensión de la densificabilidad ya existente a subconjuntos de espacios vectoriales topológicos. Introducimos la noción de densificabilidad lineal, que combina ventajas de ambos conceptos. Finalmente, presentamos una aplicación de la teoría de curvas alfa-densas al cálculo de la dimensión logarítmica.

Page generated in 0.0322 seconds