11 |
Multi-term multiple prediction using separated reflections and diffractions combined with curvelet-based subtractionVerschuur, Dirk J., Wang, Deli, Herrmann, Felix J. January 2007 (has links)
The surface-related multiple elimination (SRME) method has proven to be successful on a large number of data cases. Most of the applications are still 2D, as the full 3D implementation is still expensive and under development. However, the earth is a 3D medium, such that 3D effects are difficult to avoid. Most of the 3D effects come from diffractive structures, whereas the specular reflections normally have less of a 3D behavior. By separating the seismic data in a specular reflecting and a diffractive part, multiple prediction can be carried out with these different subsets of the input data, resulting in several categories of predicted multiples. Because each category of predicted multiples can be subtracted from the input data with different adaptation filters, a more flexible SRME procedure is obtained. Based on some initial results from a Gulf of Mexico dataset, the potential of this approach is investigated.
|
12 |
Curvelet-based primary-multiple separation from a Bayesian perspectiveSaab, Rayan, Wang, Deli, Yilmaz, Ozgur, Herrmann, Felix J. January 2007 (has links)
In this abstract, we present a novel primary-multiple separation
scheme which makes use of the sparsity of both primaries and
multiples in a transform domain, such as the curvelet transform,
to provide estimates of each. The proposed algorithm
utilizes seismic data as well as the output of a preliminary step
that provides (possibly) erroneous predictions of the multiples.
The algorithm separates the signal components, i.e., the primaries
and multiples, by solving an optimization problem that
assumes noisy input data and can be derived from a Bayesian
perspective. More precisely, the optimization problem can be
arrived at via an assumption of a weighted Laplacian distribution
for the primary and multiple coefficients in the transform
domain and of white Gaussian noise contaminating both the
seismic data and the preliminary prediction of the multiples,
which both serve as input to the algorithm.
|
13 |
Seismic imaging and processing with curveletsHerrmann, Felix J. January 2007 (has links)
No description available.
|
14 |
Surface-related multiple prediction from incomplete dataHerrmann, Felix J. January 2007 (has links)
No description available.
|
15 |
Compressive seismic imagingHerrmann, Felix J. January 2007 (has links)
Seismic imaging involves the solution of an inverse-scattering problem during which the energy of (extremely) large data volumes is collapsed onto the Earth's reflectors. We show how the ideas from 'compressive sampling' can alleviate this task by exploiting the curvelet transform's 'wavefront-set detection' capability and 'invariance' property under wave propagation. First, a wavelet-vaguellete technique is reviewed, where seismic amplitudes are recovered from complete data by diagonalizing the Gramm matrix of the linearized scattering problem. Next, we show how the recovery of seismic wavefields from incomplete data can be cast into a compressive sampling problem, followed by a proposal to compress wavefield extrapolation operators via compressive sampling in the modal domain. During the latter approach, we explicitly exploit the mutual incoherence between the eigenfunctions of the Helmholtz operator and the curvelet frame elements that compress the extrapolated wavefield. This is joint work with Gilles Hennenfent, Peyman Moghaddam, Tim Lin, Chris Stolk and Deli Wang.
|
16 |
Medical Image Registration Using Artificial Neural NetworkChoi, Hyunjong 01 December 2015 (has links)
Image registration is the transformation of different sets of images into one coordinate system in order to align and overlay multiple images. Image registration is used in many fields such as medical imaging, remote sensing, and computer vision. It is very important in medical research, where multiple images are acquired from different sensors at various points in time. This allows doctors to monitor the effects of treatments on patients in a certain region of interest over time. In this thesis, artificial neural networks with curvelet keypoints are used to estimate the parameters of registration. Simulations show that the curvelet keypoints provide more accurate results than using the Discrete Cosine Transform (DCT) coefficients and Scale Invariant Feature Transform (SIFT) keypoints on rotation and scale parameter estimation.
|
17 |
Surface related multiple prediction from incomplete dataHerrmann, Felix J. January 2007 (has links)
Incomplete data, unknown source-receiver signatures and free-surface reflectivity represent
challenges for a successful prediction and subsequent removal of multiples. In
this paper, a new method will be represented that tackles these challenges by combining
what we know about wavefield (de-)focussing, by weighted convolutions/correlations,
and recently developed curvelet-based recovery by sparsity-promoting inversion (CRSI).
With this combination, we are able to leverage recent insights from wave physics towards
a nonlinear formulation for the multiple-prediction problem that works for incomplete
data and without detailed knowledge on the surface effects.
|
18 |
Recent developments in curvelet-based seismic processingHerrmann, Felix J. January 2007 (has links)
No description available.
|
19 |
A multimodal deep learning framework using local feature representations for face recognitionAl-Waisy, Alaa S., Qahwaji, Rami S.R., Ipson, Stanley S., Al-Fahdawi, Shumoos 04 September 2017 (has links)
Yes / The most recent face recognition systems are
mainly dependent on feature representations obtained using
either local handcrafted-descriptors, such as local binary patterns
(LBP), or use a deep learning approach, such as deep
belief network (DBN). However, the former usually suffers
from the wide variations in face images, while the latter
usually discards the local facial features, which are proven
to be important for face recognition. In this paper, a novel
framework based on merging the advantages of the local
handcrafted feature descriptors with the DBN is proposed to
address the face recognition problem in unconstrained conditions.
Firstly, a novel multimodal local feature extraction
approach based on merging the advantages of the Curvelet
transform with Fractal dimension is proposed and termed
the Curvelet–Fractal approach. The main motivation of this
approach is that theCurvelet transform, a newanisotropic and
multidirectional transform, can efficiently represent themain
structure of the face (e.g., edges and curves), while the Fractal
dimension is one of the most powerful texture descriptors
for face images. Secondly, a novel framework is proposed,
termed the multimodal deep face recognition (MDFR)framework,
to add feature representations by training aDBNon top
of the local feature representations instead of the pixel intensity
representations. We demonstrate that representations acquired by the proposed MDFR framework are complementary
to those acquired by the Curvelet–Fractal approach.
Finally, the performance of the proposed approaches has
been evaluated by conducting a number of extensive experiments
on four large-scale face datasets: the SDUMLA-HMT,
FERET, CAS-PEAL-R1, and LFW databases. The results
obtained from the proposed approaches outperform other
state-of-the-art of approaches (e.g., LBP, DBN, WPCA) by
achieving new state-of-the-art results on all the employed
datasets.
|
20 |
A Robust Face Recognition System Based on Curvelet and Fractal Dimension TransformsAl-Waisy, Alaa S., Qahwaji, Rami S.R., Ipson, Stanley S., Al-Fahdawi, Shumoos January 2015 (has links)
Yes / n this paper, a powerful face recognition system for authentication and identification tasks is presented and a new facial feature extraction approach is proposed. A novel feature extraction method based on combining the characteristics of the Curvelet transform and Fractal dimension transform is proposed. The proposed system consists of four stages. Firstly, a simple preprocessing algorithm based on a sigmoid function is applied to standardize the intensity dynamic range in the input image. Secondly, a face detection stage based on the Viola-Jones algorithm is used for detecting the face region in the input image. After that, the feature extraction stage using a combination of the Digital Curvelet via wrapping transform and a Fractal Dimension transform is implemented. Finally, the K-Nearest Neighbor (K-NN) and Correlation Coefficient (CC) Classifiers are used in the recognition task. Lastly, the performance of the proposed approach has been tested by carrying out a number of experiments on three well-known datasets with high diversity in the facial expressions: SDUMLA-HMT, Faces96 and UMIST datasets. All the experiments conducted indicate the robustness and the effectiveness of the proposed approach for both authentication and identification tasks compared to other established approaches.
|
Page generated in 0.0921 seconds