• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An inductive RFID system with build-in asynchronous ECC crypto-processor. / CUHK electronic theses & dissertations collection

January 2008 (has links)
Radio Frequency Identification (RFID) has received a great deal of attention in past decades. It is an automatic identification system by replying and retrieving data remotely using RFID transponders. Basically, RFID systems can be divided into three main categories: short transmission range, medium transmission range, and long transmission range. / Short and medium range RFIDs generally are passive transponders while long range RFID is of either passive or active type. In this thesis, a short transmission range RFID transponder is presented. This is a passive transponder which generates power for internal circuitry by inductive coupling. For automatic identification applications such as electronic money tickets, the requirements of endurance, weight, size as well as cost appeal to use passive transponder rather than active transponder. Researches on the passive transponders have created a great challenge for engineers in terms of the tradeoff between power constraints, processing power and data transmission range. / The presented RFID transponder system adheres to the ISO 14443 standard Type B specification communication interface, which operates at 13.56MHz carrier frequency with a maximum read range around 50 mm. This research implemented a low power, high security, and long read range RFID transponder. For the analog RF interface, a series of novel architectures are adopted to improve the data transmission range. The digital core in the presented crypto-processor for data security. The asynchronous architecture has the advantages of fast computation time, low power consumption and small area. These are the attractive reasons to implement the core processing units using an asynchronous architecture. / This RFID system was fabricated with a 0.35um two-poly four-metal standard CMOS process with the silicon area of 1516 um x 1625 um. The measurement results show that the analog RF interface can generate a maximum 5.45mW power while the digital core circuit consumes only 2.77mW. In the wireless communication tests, the transponder read range can reach as far as 50 mm. / Leung, Pak Keung. / "June 2008." / Adviser: Choy Chin Sing. / Source: Dissertation Abstracts International, Volume: 70-03, Section: B, page: 1847. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2008. / Includes bibliographical references. / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts in English and Chinese. / School code: 1307.
2

A microcoded elliptic curve cryptographic processor.

January 2001 (has links)
Leung Ka Ho. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2001. / Includes bibliographical references (leaves [85]-90). / Abstracts in English and Chinese. / Abstract --- p.i / Acknowledgments --- p.iii / List of Figures --- p.ix / List of Tables --- p.xi / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Motivation --- p.1 / Chapter 1.2 --- Aims --- p.3 / Chapter 1.3 --- Contributions --- p.3 / Chapter 1.4 --- Thesis Outline --- p.4 / Chapter 2 --- Cryptography --- p.6 / Chapter 2.1 --- Introduction --- p.6 / Chapter 2.2 --- Foundations --- p.6 / Chapter 2.3 --- Secret Key Cryptosystems --- p.8 / Chapter 2.4 --- Public Key Cryptosystems --- p.9 / Chapter 2.4.1 --- One-way Function --- p.10 / Chapter 2.4.2 --- Certification Authority --- p.10 / Chapter 2.4.3 --- Discrete Logarithm Problem --- p.11 / Chapter 2.4.4 --- RSA vs. ECC --- p.12 / Chapter 2.4.5 --- Key Exchange Protocol --- p.13 / Chapter 2.4.6 --- Digital Signature --- p.14 / Chapter 2.5 --- Secret Key vs. Public Key Cryptography --- p.16 / Chapter 2.6 --- Summary --- p.18 / Chapter 3 --- Mathematical Background --- p.19 / Chapter 3.1 --- Introduction --- p.19 / Chapter 3.2 --- Groups and Fields --- p.19 / Chapter 3.3 --- Finite Fields --- p.21 / Chapter 3.4 --- Modular Arithmetic --- p.21 / Chapter 3.5 --- Polynomial Basis --- p.21 / Chapter 3.6 --- Optimal Normal Basis --- p.22 / Chapter 3.6.1 --- Addition --- p.23 / Chapter 3.6.2 --- Squaring --- p.24 / Chapter 3.6.3 --- Multiplication --- p.24 / Chapter 3.6.4 --- Inversion --- p.30 / Chapter 3.7 --- Summary --- p.33 / Chapter 4 --- Literature Review --- p.34 / Chapter 4.1 --- Introduction --- p.34 / Chapter 4.2 --- Hardware Elliptic Curve Implementation --- p.34 / Chapter 4.2.1 --- Field Processors --- p.34 / Chapter 4.2.2 --- Curve Processors --- p.36 / Chapter 4.3 --- Software Elliptic Curve Implementation --- p.36 / Chapter 4.4 --- Summary --- p.38 / Chapter 5 --- Introduction to Elliptic Curves --- p.39 / Chapter 5.1 --- Introduction --- p.39 / Chapter 5.2 --- Historical Background --- p.39 / Chapter 5.3 --- Elliptic Curves over R2 --- p.40 / Chapter 5.3.1 --- Curve Addition and Doubling --- p.41 / Chapter 5.4 --- Elliptic Curves over Finite Fields --- p.44 / Chapter 5.4.1 --- Elliptic Curves over Fp with p>〉3 --- p.44 / Chapter 5.4.2 --- Elliptic Curves over F2n --- p.45 / Chapter 5.4.3 --- Operations of Elliptic Curves over F2n --- p.46 / Chapter 5.4.4 --- Curve Multiplication --- p.49 / Chapter 5.5 --- Elliptic Curve Discrete Logarithm Problem --- p.51 / Chapter 5.6 --- Public Key Cryptography --- p.52 / Chapter 5.7 --- Elliptic Curve Diffie-Hellman Key Exchange --- p.54 / Chapter 5.8 --- Summary --- p.55 / Chapter 6 --- Design Methodology --- p.56 / Chapter 6.1 --- Introduction --- p.56 / Chapter 6.2 --- CAD Tools --- p.56 / Chapter 6.3 --- Hardware Platform --- p.59 / Chapter 6.3.1 --- FPGA --- p.59 / Chapter 6.3.2 --- Reconfigurable Hardware Computing --- p.62 / Chapter 6.4 --- Elliptic Curve Processor Architecture --- p.63 / Chapter 6.4.1 --- Arithmetic Logic Unit (ALU) --- p.64 / Chapter 6.4.2 --- Register File --- p.68 / Chapter 6.4.3 --- Microcode --- p.69 / Chapter 6.5 --- Parameterized Module Generator --- p.72 / Chapter 6.6 --- Microcode Toolkit --- p.73 / Chapter 6.7 --- Initialization by Bitstream Reconfiguration --- p.74 / Chapter 6.8 --- Summary --- p.75 / Chapter 7 --- Results --- p.76 / Chapter 7.1 --- Introduction --- p.76 / Chapter 7.2 --- Elliptic Curve Processor with Serial Multiplier (p = 1) --- p.76 / Chapter 7.3 --- Projective verses Affine Coordinates --- p.78 / Chapter 7.4 --- Elliptic Curve Processor with Parallel Multiplier (p > 1) --- p.79 / Chapter 7.5 --- Summary --- p.80 / Chapter 8 --- Conclusion --- p.82 / Chapter 8.1 --- Recommendations for Future Research --- p.83 / Bibliography --- p.85 / Chapter A --- Elliptic Curves in Characteristics 2 and3 --- p.91 / Chapter A.1 --- Introduction --- p.91 / Chapter A.2 --- Derivations --- p.91 / Chapter A.3 --- "Elliptic Curves over Finite Fields of Characteristic ≠ 2,3" --- p.92 / Chapter A.4 --- Elliptic Curves over Finite Fields of Characteristic = 2 --- p.94 / Chapter B --- Examples of Curve Multiplication --- p.95 / Chapter B.1 --- Introduction --- p.95 / Chapter B.2 --- Numerical Results --- p.96
3

Smart card fault attacks on public key and elliptic curve cryptography

Ling, Jie January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Blömmer, Otto, and Seifert presented a fault attack on elliptic curve scalar multiplication called the Sign Change Attack, which causes a fault that changes the sign of the accumulation point. As the use of a sign bit for an extended integer is highly unlikely, this appears to be a highly selective manipulation of the key stream. In this thesis we describe two plausible fault attacks on a smart card implementation of elliptic curve cryptography. King and Wang designed a new attack called counter fault attack by attacking the scalar multiple of discrete-log cryptosystem. They then successfully generalize this approach to a family of attacks. By implementing King and Wang's scheme on RSA, we successfully attacked RSA keys for a variety of sizes. Further, we generalized the attack model to an attack on any implementation that uses NAF and wNAF key.

Page generated in 0.1337 seconds