1 |
Srovnání kryptografických primitiv využívajících eliptických křivek na různých hardwarových platformách / Comparison of cryptographic primitives used in elliptic curve cryptograpny on different hardware platformsBrychta, Josef January 2018 (has links)
This master thesis deals with the implementation of variants of cryptographic libraries containing primitives for elliptic curves. By creating custom metering charts to compare each implementation. The main task was not only the implementation of libraries but also the design and implementation of test scenarios together with the creation of measurement methods for different libraries and hardware platforms. As a result, a number of experimental tests were conducted on different curves and their parameters so that the results of the work included complex problems of elliptic curves in cryptography. The main parameters were power, time and memory consumption.
|
2 |
Smart card fault attacks on public key and elliptic curve cryptographyLing, Jie January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Blömmer, Otto, and Seifert presented a fault attack on elliptic curve scalar multiplication called the Sign Change Attack, which causes a fault that changes the sign of the accumulation point. As the use of a sign bit for an extended integer is highly unlikely, this appears to be a highly selective manipulation of the key stream. In this thesis we describe two plausible fault attacks on a smart card implementation of elliptic curve cryptography. King and Wang designed a new attack called counter fault attack by attacking the scalar multiple of discrete-log cryptosystem. They then successfully generalize this approach to a family of attacks. By implementing King and Wang's scheme on RSA, we successfully attacked RSA keys for a variety of sizes. Further, we generalized the attack model to an attack on any implementation that uses NAF and wNAF key.
|
Page generated in 0.0254 seconds