• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 32
  • 14
  • 8
  • 5
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 75
  • 11
  • 9
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Comparative investigation of the chemical composition and the water permeability of fruit and leaf cuticles / Vergleichende Untersuchung zur chemischen Zusammensetzung und zur Wasserpermeabilität der Kutikula von Früchten und Blättern

Huang, Hua January 2018 (has links) (PDF)
The plant cuticle is a continuous extracellular protective layer covering the outermost surfaces of higher plants that are in contact with the surrounding atmosphere. The primary function of the cuticular lipid membrane, which is mainly composed of biopolymer cutin and cuticular waxes, is to protect the plant organs against uncontrolled water loss. The chemical composition and the biophysical properties of cuticular waxes affect the rate of water diffusion across the cuticle. Fruit transpiration plays an important role in the development and the maintenance of fruit quality. The fruit has been suggested to present better dehydration stress tolerance than the leaf. However, the differences in transpiration and the chemical composition of cuticular waxes between fruit and leaf have yet to be comprehensively investigated. The present study aims to investigate the water permeability and cuticular wax composition of fruit and leaf cuticles of a wide range of plant species and to elucidate the different roles of the cuticular wax components in the transpiration barrier. To address these objectives, fruit and leaf samples from 17 species were investigated. The cuticular transpiration of intact fruits and astomatous adaxial leaf surfaces and the minimum leaf conductance obtained by leaf drying curves for intact leaves were gravimetrically determined for a variety of plant species. The chemical composition of cuticular waxes of fruits and leaves was thoroughly analysed by gas chromatography with flame ionization and mass spectrometry. The water permeability of fruits ranged from 3.7 x 10-5 m s-1 (Prunus domestica subsp. syriaca) to 37.4 x 10-5 m s-1 (Coffea arabica), whereas permeability for leaves varied between 1.6 x 10-5 m s-1 (Cornus officinalis) and 4.5 x 10-5 m s-1 (Prunus domestica subsp. syriaca (L.)). The interspecies range of water permeability of fruits was significantly higher than that of leaves. Chemical analyses of the cuticular waxes demonstrated that fatty acids, primary alcohols, n-alkanes, aldehydes and alkyl esters were the predominant very-long-chain aliphatic compound classes of fruit and leaf surfaces. Sterols, such as β-sitosterol and campesterol, and triterpenoids, such as oleanolic acid, ursolic acid, α-amyrin and ß-amyrin, were the major cyclic compound classes in the cuticular wax membrane. The amount and composition of cuticular waxes of both fruits and leaves varied at an intraspecific level. There were no significant correlations between the total cuticular wax load or the individual cuticular wax composition and the water permeability of fruits or leaves independently or together. After combining the fruit and leaf data set, a significant correlation between the average chain length of very-long-chain aliphatic compounds and permeabilities was detected, i.e. the longer the average chain length, the lower the water permeability. Interestingly, n-Nonacosane (C29) was abundantly detected in fruit waxes of Rosaceae species. These fruits exhibited a relatively low transpiration level, which was very close to their leaf cuticular permeability. The present study suggests that the lower cuticular permeability of leaves, in comparison to that of fruits, may be attributed to the longer average chain length of aliphatic compounds. The accumulation of total wax, triterpenoids and aliphatic compounds may not contribute to the transpiration barrier directly. The present results are highly consistent with the previous model assumptions for the cuticular structure and transport barrier. Furthermore, this comparative study on leaf and fruit cuticles provides further insights linking the cuticular wax chemistry to the physiological properties of the plant cuticle. / Die pflanzliche Kutikula ist eine kontinuierliche extrazelluläre Schutzschicht, welche die oberirdischen primären Abschlussgewebe höherer Pflanzen bedeckt, die in Kontakt mit der umgebenden Atmosphäre stehen. Die primäre Funktion der lipophilen Kutikularmembran, die hauptsächlich aus dem Biopolymer Kutin und kutikulären Wachsen aufgebaut ist, besteht darin, die Pflanzenorgane vor unkontrolliertem Wasserverlust zu schützen. Die chemische Zusammensetzung und die biophysikalischen Eigenschaften von kutikulären Wachsen beeinflussen weitgehend die Geschwindigkeit der Wasserdiffusion über die Kutikula. Die Transpiration von Früchten spielt eine wichtige Rolle in der Ausbildung und Beständigkeit von Fruchtqualitätsmerkmalen. Unterschiede in der Transpiration und der chemischen Zusammensetzung der kutikulären Wachse zwischen Frucht und Blatt sollten untersucht werden. Die vorliegende Studie zielt darauf ab, die Wasserpermeabilität und die kutikuläre Wachszusammensetzung von Früchten und Blättern aus einem breiten Spektrum von Pflanzenarten zu untersuchen und die verschiedenen Rollen der kutikulären Wachskomponenten in den Transpirationsbarriereeigenschaften aufzuklären. Um diesen Zielen näherzukommen, wurden Frucht- und Blattproben von 17 Arten untersucht. Die kutikuläre Transpiration von intakten Früchten und astomatären adaxialen Blattoberflächen ausgewählter Arten sowie der minimale Leitwert von deren Blättern, ermittelt durch Austrocknungskurven mit intakten Blättern, wurden gravimetrisch bestimmt. Die chemische Zusammensetzung der kutikulären Wachse von Früchten und Blättern wurde durch Gaschromatographie mit Flammenionisation und Massenspektrometrie nachgewiesen. Die Wasserdurchlässigkeit von Früchten reichte von 3,7 x 10-5 m s-1 (Prunus domestica subsp. syriaca) bis 37,4 x 10-5 m s-1 (Coffea arabica), während die Werte für Blätter zwischen 1,6 x 10-5 m s-1 (Cornus officinalis) und 4,5 x 10-5 m s-1 variierten (Prunus domestica subsp. syriaca). Der interspezifische Vergleich der Wasserdurchlässigkeit von Früchten war deutlich höher als die der Blätter. Chemische Analysen der kutikulären Wachse zeigten, dass Fettsäuren, primäre Alkohole, n-Alkane, Aldehyde und Alkylester die häufigsten sehr langkettigen aliphatischen Verbindungsklassen für Früchte und Blätter waren. Sterole wie β-Sitosterol und Campesterol und Triterpenoide zum Beispiel Oleanolsäure, Ursolsäure, α-Amyrin und ß-Amyrin, waren die wichtigsten zyklischen Verbindungsklassen in den kutikulären Wachsmischungen. Die Menge und Zusammensetzung der kutikulären Wachse, sowohl von Früchten als auch von Blättern, variierte auf intraspezifischer Ebene. Es waren keine signifikanten Korrelationen zwischen der Menge der kutikulären Wachsablagerung oder der kutikulären Wachszusammensetzung und der Wasserdurchlässigkeit von Frucht- und/oder Blattoberflächen zu erkennen. Wurden die Frucht- und Blattdatensätze zusammen untersucht, so war eine signifikante Korrelation zwischen der durchschnittlichen Kettenlänge von sehr langkettigen aliphatischen Verbindungen und der Permeabilität festzustellen, ging eine längere durchschnittliche Kettenlänge mit geringerer Wasserdurchlässigkeit einher. Interessanterweise wurden große Mengen an n-Nonacosan in Fruchtwachsen der untersuchten Rosaceae-Arten nachgewiesen. Diese Früchte zeigten ein relativ niedriges Transpirationsniveau, das sehr nahe an der Permeabilität ihrer Blattkutikeln lag. Die vorliegende Studie liefert weitere Belege dafür, dass der im Allgemeinen niedrigere minimale Leitwert von Blättern auf die – im Vergleich zur Kutikula von Früchten – längere durchschnittliche Kettenlänge der aliphatischen Verbindungen zurückzuführen ist. Die Anhäufung von Gesamtwachs, Triterpenoiden oder aliphatischen Verbindungen trägt nicht direkt zur Transpirationsbarriere bei. Die vorliegenden Ergebnisse decken sich in hohem Maße mit den bisherigen Modellannahmen zur Struktur der Kutikula und der von ihr vermittelten Funktion als Transpirationsbarriere. Darüber hinaus gibt diese Vergleichsstudie über die Kutikula von Früchten und Blättern zahlreiche Einblicke, die dabei helfen können, die kutikuläre Wachschemie mit den physiologischen Eigenschaften der pflanzlichen Kutikula zu verknüpfen.
12

Catecholamines in the hemolymph and cuticle of the American cockroach, Periplaneta americana (L.) and the Madeira cockroach, Leucophaea maderae (F.)

Czapla, Thomas H. January 1985 (has links)
Call number: LD2668 .T4 1985 C92 / Master of Science
13

Propriedades espectrais das plantas no infravermelho termal (2,5 - 14 um): da química ao dossel. / Spectral properties of plants in the thermal infrared (2.5 - 14 um): from the chemistry to the canopy.

Ribeiro da Luz, Beatriz 30 June 2005 (has links)
Este trabalho explora as propriedades óticas das plantas no infravermelho termal para avaliar como esse tipo de dado poderia ser usado em estudos de ecossistemas, tanto no laboratório, quanto no campo, ou com sensoriamento remoto, e também, para analisar vários aspectos da química de diferentes espécies. Espectros de refletância total atenuada (ATR) das folhas mostram bandas de absorção devidas às vibrações moleculares de diferentes compostos, e quando ATR de folhas frescas foi comparado com espectros de compostos padrões selecionados, foi possível relacionar bandas das folhas com bandas de celulose, cutina, sílica ( quartzo microcristalino), água e triterpeno ácido. Usando um procedimento de busca foi possível localizar espécies com características químicas semelhantes, dentro de uma biblioteca espectral. Potenciais fontes de variações foram exploradas para compreender se o ATR poderia ser usado na identificação de espécies. Variações temporais, espaciais e posicionais. Por exemplo, folhas de sol mostraram diferenças espectrais de folhas de sombra. Espectros das superfícies adaxiais quase sempre eram diferentes das abaxiais. Indivíduos da mesma espécies quase sempre mostraram espectros muito similares. Numa simulação de um estudo ecológico de campo usando ATR como ferramenta para a identificação de espécies, 82% dos indivíduos foram corretamente identificados. Imagens de microscopia de varredura (SEM) das folhas foram usadas com medidas de refletância hemisférica direcional (DHR) para estudar os efeitos da tridimensionalidade estrutural sobre o comportamento espectral. Por exemplo, estruturas formadas pelas ceras na superfície foliar podem causar atenuação das características espectrais devidas ao efeito Holblaum (de cavidade). Medidas de DHR podem ser relacionadas à emissividade pela lei de Kirchhoff (ε=1-R), e por isso é importante compreende-las, pelas informações que podem estar disponíveis por sensoriamento remoto. Para explorar os efeitos da estrutura do dossel nos espectros, medidas de emissividade foram feitas usando um espectrômetro de campo. Os dados mostram, pela primeira vez, que é possível discriminar características de emissividade espectral de plantas daquelas do ambiente ao redor. Medidas espectrais feitas com distâncias horizontais crescentes de alguns dosséis de árvores mostraram uma atenuação progressiva das características de emissividade espectral, devido ao número crescente de cavidades no campo de visão, e problemas de correção atmosférica. Apesar disso, há potencial no estudo de plantas usando sensoriamento remoto no infravermelho termal. Um sensor em plataforma de avião operando na janela atmosférica entre 8-14 m teria que ter uma alta razão sinal-ruído, e um campo de visão pequeno que permittise medidas das folhas individualmente. Métodos de calibragem e algoritmos para análises espectrais precisariam ser refinados a fim de permitir a extração das características sutis de emissividade das plantas. / This work explores the thermal infrared spectral properties of plants to evaluate how such data might be used in laboratory, field, and remote sensing studies of ecosystems, and to analyze diverse chemical aspects of plant species. Attenuated total reflectance (ATR) spectra of plant leaves display absorption bands caused by the fundamental molecular vibrations of various compounds. By comparing ATR spectra of fresh leaves to reference spectra of selected pure compounds, it was possible to assign a number of leaf absorption bands related to cellulose, cutin, silica ( quartz micro-crystalline), water and acid triterpene. By using spectral search/match procedures it was possible to locate species within a database of leaf spectra that had similar chemical characteristics. Potential sources of spectral variation were explored, including temporal, spatial, and positional variations. For example, sun leaves showed spectral differences compared to shaded leaves. Spectra of adaxial leaf surfaces were commonly different from those of abaxial surfaces. Individuals of the same species consistently showed very similar spectra. In a simulated ecological study using field ATR measurements as a tool for species identification 82% of the individuals were correctly identified. Scanning electron microscope images were utilized in conjunction with directional hemispherical reflectance (DHR) measurements of leaves to study 3-dimensional structural effects on spectral behavior. For example, small-scale structures formed by waxes on a leaf surface can cause the attenuation of spectral features due to the Holblaum (cavity) effect. DHR measurements can be linked to emissivity using Kirchhoff’s law (ε=1-R), and therefore are relevant to understanding the kinds of information concerning plants that may be available via remote sensing. Finally, to explore the effects of canopy structure on spectra, direct emissivity measurements were made by using a field spectrometer. The data show, for the first time, that it is possible to discriminate spectral emissivity features of plants from those of the surrounding environment. Spectral measurements made at increasing horizontal distances from several tree canopies showed progressive attenuation of the spectral emissivity features. This attenuation is ascribed to the increasing proportion of canopy voids in the instrument field of view, and to increased surface scattering effects. Errors associated with removal of atmospheric features also contributed to the loss of spectral information at greater measurement distances. Despite these problems, there is untapped potential for using thermal infrared remote sensing measurements to study plants. To be effective an airborne sensor operating in the 8-14 m atmospheric window would need high signal-to-noise and a small instantaneous field of view to enable measurements of individual leaf surfaces. Data calibration methods and spectral analysis algorithms would also require refinement to permit the extraction of subtle plant emissivity features.
14

Propriedades espectrais das plantas no infravermelho termal (2,5 - 14 um): da química ao dossel. / Spectral properties of plants in the thermal infrared (2.5 - 14 um): from the chemistry to the canopy.

Beatriz Ribeiro da Luz 30 June 2005 (has links)
Este trabalho explora as propriedades óticas das plantas no infravermelho termal para avaliar como esse tipo de dado poderia ser usado em estudos de ecossistemas, tanto no laboratório, quanto no campo, ou com sensoriamento remoto, e também, para analisar vários aspectos da química de diferentes espécies. Espectros de refletância total atenuada (ATR) das folhas mostram bandas de absorção devidas às vibrações moleculares de diferentes compostos, e quando ATR de folhas frescas foi comparado com espectros de compostos padrões selecionados, foi possível relacionar bandas das folhas com bandas de celulose, cutina, sílica ( quartzo microcristalino), água e triterpeno ácido. Usando um procedimento de busca foi possível localizar espécies com características químicas semelhantes, dentro de uma biblioteca espectral. Potenciais fontes de variações foram exploradas para compreender se o ATR poderia ser usado na identificação de espécies. Variações temporais, espaciais e posicionais. Por exemplo, folhas de sol mostraram diferenças espectrais de folhas de sombra. Espectros das superfícies adaxiais quase sempre eram diferentes das abaxiais. Indivíduos da mesma espécies quase sempre mostraram espectros muito similares. Numa simulação de um estudo ecológico de campo usando ATR como ferramenta para a identificação de espécies, 82% dos indivíduos foram corretamente identificados. Imagens de microscopia de varredura (SEM) das folhas foram usadas com medidas de refletância hemisférica direcional (DHR) para estudar os efeitos da tridimensionalidade estrutural sobre o comportamento espectral. Por exemplo, estruturas formadas pelas ceras na superfície foliar podem causar atenuação das características espectrais devidas ao efeito Holblaum (de cavidade). Medidas de DHR podem ser relacionadas à emissividade pela lei de Kirchhoff (ε=1-R), e por isso é importante compreende-las, pelas informações que podem estar disponíveis por sensoriamento remoto. Para explorar os efeitos da estrutura do dossel nos espectros, medidas de emissividade foram feitas usando um espectrômetro de campo. Os dados mostram, pela primeira vez, que é possível discriminar características de emissividade espectral de plantas daquelas do ambiente ao redor. Medidas espectrais feitas com distâncias horizontais crescentes de alguns dosséis de árvores mostraram uma atenuação progressiva das características de emissividade espectral, devido ao número crescente de cavidades no campo de visão, e problemas de correção atmosférica. Apesar disso, há potencial no estudo de plantas usando sensoriamento remoto no infravermelho termal. Um sensor em plataforma de avião operando na janela atmosférica entre 8-14 m teria que ter uma alta razão sinal-ruído, e um campo de visão pequeno que permittise medidas das folhas individualmente. Métodos de calibragem e algoritmos para análises espectrais precisariam ser refinados a fim de permitir a extração das características sutis de emissividade das plantas. / This work explores the thermal infrared spectral properties of plants to evaluate how such data might be used in laboratory, field, and remote sensing studies of ecosystems, and to analyze diverse chemical aspects of plant species. Attenuated total reflectance (ATR) spectra of plant leaves display absorption bands caused by the fundamental molecular vibrations of various compounds. By comparing ATR spectra of fresh leaves to reference spectra of selected pure compounds, it was possible to assign a number of leaf absorption bands related to cellulose, cutin, silica ( quartz micro-crystalline), water and acid triterpene. By using spectral search/match procedures it was possible to locate species within a database of leaf spectra that had similar chemical characteristics. Potential sources of spectral variation were explored, including temporal, spatial, and positional variations. For example, sun leaves showed spectral differences compared to shaded leaves. Spectra of adaxial leaf surfaces were commonly different from those of abaxial surfaces. Individuals of the same species consistently showed very similar spectra. In a simulated ecological study using field ATR measurements as a tool for species identification 82% of the individuals were correctly identified. Scanning electron microscope images were utilized in conjunction with directional hemispherical reflectance (DHR) measurements of leaves to study 3-dimensional structural effects on spectral behavior. For example, small-scale structures formed by waxes on a leaf surface can cause the attenuation of spectral features due to the Holblaum (cavity) effect. DHR measurements can be linked to emissivity using Kirchhoff’s law (ε=1-R), and therefore are relevant to understanding the kinds of information concerning plants that may be available via remote sensing. Finally, to explore the effects of canopy structure on spectra, direct emissivity measurements were made by using a field spectrometer. The data show, for the first time, that it is possible to discriminate spectral emissivity features of plants from those of the surrounding environment. Spectral measurements made at increasing horizontal distances from several tree canopies showed progressive attenuation of the spectral emissivity features. This attenuation is ascribed to the increasing proportion of canopy voids in the instrument field of view, and to increased surface scattering effects. Errors associated with removal of atmospheric features also contributed to the loss of spectral information at greater measurement distances. Despite these problems, there is untapped potential for using thermal infrared remote sensing measurements to study plants. To be effective an airborne sensor operating in the 8-14 m atmospheric window would need high signal-to-noise and a small instantaneous field of view to enable measurements of individual leaf surfaces. Data calibration methods and spectral analysis algorithms would also require refinement to permit the extraction of subtle plant emissivity features.
15

The naked truth : how the EF-hand of Nkd modulates divergent Wnt signaling outputs

Marsden, Autumn Nichelle 15 December 2017 (has links)
The Wnt signaling network plays critical roles in development and is implicated in human disease. Wnts comprise a complex signaling network that, upon ligand binding, activates the phosphoprotein Dishevelled (Dvl), leading to distinct outputs including polarized cell movement (known as planar cell polarity, Wnt/PCP) and stabilization of the transcription factor β-catenin (Wnt/β-catenin). The mechanisms that determine a specific output are not completely understood, especially because they share receptors and cellular effectors, such as Naked-cuticle 1 (Nkd), a Dvl-interacting protein. The Nkd protein contains a myristoylation domain and an EF-hand, a putative calcium binding domain. Genetic evidence in Drosophila demonstrates that Nkd acts as a Wnt/β-catenin antagonist, while in contrast, Nkd modulates both branches of Wnt signaling in vertebrates. We hypothesize that the specialized role of Nkd in Drosophila is due to a disrupted EF-hand that cannot not bind calcium. Indeed, this change is unique to Drosophila and is not present in closely related insects all the way up to vertebrates. To test the role of the Nkd EF-hand in Wnt signal integration, we created two different mutations in the zebrafish Nkd: one with a neutralized EF-hand, as well as a Drosophila-like EF-hand, and manipulate Nkd activity in the zebrafish. Using a combination of biochemical and functional assays, we identified a requirement for the Nkd EF-hand in Wnt/PCP but not in Wnt/β-catenin transcriptional outputs. We demonstrate that the Drosophila-like antagonizes Wnt/β-catenin more robustly than zebrafish Nkd. The EF-hand of Nkd is similar to the EF-hand of a known calcium binding protein, Recoverin, a myristoyl-swtich protein that shuttles between the membrane and the cytoplasm depending on its calcium bound state. Consistently, we observe that NkdWT, but not the two mutant forms, shows localization changes in the calcium fluxing cells that also host converging Wnt signals versus calcium quiescent cells. Our functional data suggests that the Nkd EF-hand is important for Wnt signal integration. Interestingly, Nkd only contains one EF-hand, and proteins that bind calcium tend to have multiple. Calcium binding can also be influenced by binding partners. Because of this, we investigate the role of the Nkd binding protein Dvl and their possible calcium affinity. Dvl is a pivotal point in the Wnt signaling network, leading to the output decision of a cell. EF-hand of Nkd binds to the PDZ domain of Dvl. Interestingly, the Dvl PDZ domain contains a region rich in negatively charged amino acids that could aid in binding calcium. In the same manner as Nkd, we generated a Dvl with neutralized putative EF-hand and tested its function and localization relative to wildtype Dvl. This work elucidates the elegant mechanism by which a cell receiving multiple Wnt signals integrates the information into a specific response. The Nkd EF-hand may serve to interpret the physiology of a cell receiving multiple cues and provides mechanistic insight into Wnt signal integration in vivo.
16

Differences in exocuticle thickness in Leucorrhinia dubia (Odonata) larvae from habitats with and without fish

Olne, Karin, Flenner, Ida January 2006 (has links)
<p>Many prey species are able to develop different morphological structures as defence against</p><p>for example predators. Some of these structures are induced only by individuals exposed to a</p><p>predator. This phenomenon is called phenotypic plasticity. In this paper we examine whether</p><p>cuticle thickness in Leucorrhinia dubia (Odonata) larvae differed between specimens caught</p><p>in fish containing lakes and fish-free lakes respectively. We measured the thickness of the</p><p>cuticle from four different parts of the larvae; profemur, pronotum, ninth segment sternite and</p><p>ninth segment tergite. Our results showed a significantly thicker exocuticle on profemur in</p><p>larvae with a head width bigger than 4.5 mm caught in lakes with fish. The smaller larvae</p><p>showed a tendency to have thinner exocuticle on profemur in presence of fish. We discuss the</p><p>probability that the differences in exocuticle thickness on profemur could be some kind of</p><p>trade-off situation. The results also showed a tendency among the large larvae; the large</p><p>individuals from lakes containing fish had a slightly thicker exocuticle on pronotum than the</p><p>bigger individuals from fish-free lakes.</p>
17

Differences in exocuticle thickness in Leucorrhinia dubia (Odonata) larvae from habitats with and without fish

Olne, Karin, Flenner, Ida January 2006 (has links)
Many prey species are able to develop different morphological structures as defence against for example predators. Some of these structures are induced only by individuals exposed to a predator. This phenomenon is called phenotypic plasticity. In this paper we examine whether cuticle thickness in Leucorrhinia dubia (Odonata) larvae differed between specimens caught in fish containing lakes and fish-free lakes respectively. We measured the thickness of the cuticle from four different parts of the larvae; profemur, pronotum, ninth segment sternite and ninth segment tergite. Our results showed a significantly thicker exocuticle on profemur in larvae with a head width bigger than 4.5 mm caught in lakes with fish. The smaller larvae showed a tendency to have thinner exocuticle on profemur in presence of fish. We discuss the probability that the differences in exocuticle thickness on profemur could be some kind of trade-off situation. The results also showed a tendency among the large larvae; the large individuals from lakes containing fish had a slightly thicker exocuticle on pronotum than the bigger individuals from fish-free lakes.
18

The Filzig protein affects embryonic cuticle and taenidia organization in Drosophila

Geberemedhin, Mengistu Tadese January 2011 (has links)
Abstract The surface of multicellular organisms is covered with epithelial cells that provide a barrier to the external environment. As part of this barrier function, most epithelia produce apical extracellular matrices (aECMs). The generation of such chemical and physical barriers requires specialized deposition of macromolecules and is likely to involve a spatial and temporal coordination of biochemical activities at the apical surface. A challenging task is thus to characterize key proteins that underlie apical cell surface organization and correct aECM assembly. The Drosophila trachea provides an excellent system to study aECM formation, as they produce an ordered aECM, called the cuticle. The tracheal cuticle is unique by its presence of cuticular ridges, called taenidial folds, which prevent collapse of tracheal tubes while allowing them to expand and contract along their length. A gene called filzig encodes a transmembrane serine protease and is required for taenidial organization. The aim of this research was to further understand Filzig function through characterization of filzig mutants and Filzig protein expression. The results showed that Filzig is expressed in cuticle-producing epithelia as cuticle deposition begins. Moreover, Flz localized to the apical epithelial surface, as well as to the aECM. The apical Flz localization does not reflect the pattern of cuticle ridges, indicating that Flz-localization is not a determinant for taneidial patterning. Instead, Flz might act on extracellular targets that localize to the future taneidial folds. Alternatively, Filzig is involved in a cascade of self-organizing activity of cuticular components to form the regular taenidial folds.
19

Use of Stable Isotope and Trace Metal Signatures to Track the Emigration of Female Blue Crabs, Callinectes sapidus, from Tampa Bay

Williams, Sky Barrington 01 January 2013 (has links)
The blue crab, Callinectes sapidus, supports a successful fishery in the Atlantic Ocean and throughout the Gulf of Mexico, with a total landing of 8,158,788 lb. and a total value of $10,562,128 for the state of Florida during 2012 (FWC 2012 Annual Landings Summary). An accurate and comprehensive understanding of the blue crab's life history and seasonal migration behavior is essential in defining effective management strategies for the fishery. Tag recapture studies and ultrasonic tracking methods for studying blue crab migrations are costly in terms of time and resources. In this study an alternative approach, microchemical natural tagging, was successfully used to determine a female's mating habitat. This approach assumes that the exoskeleton of the post-terminal molt female blue crab reflects the mating habitat's chemical signature and that the chemical signals are stable over time. To test these hypotheses, mature female blue crabs were collected from two Tampa Bay locations. Collected crabs were placed in tanks for 29 days, a subset was sacrificed at T = 0 and then twice per week, and the exoskeletons were analyzed via Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and Elemental Analyzer Infrared Mass Spectrometry (EA-IRMS) to observe the stability of the exoskseletal chemical signature over time. Over the 29 day time series, no significant change in the concentrations of Li, Ca, and Ba, or the isotopic ratios of 13C/12C (δ13C) and 15N/14N (δ15N) were observed (ANOVA p-value > 0.05). A Canonical Analysis of Principal Coordinates (CAP)-based discriminate analysis with leave-one-out cross-validation collectively compared Li concentrations, δ13C, and δ15N among five Tampa Bay locations, producing a confusion matrix successfully classifying field collected crabs into: Alafia River 33%#37;, Little Manatee River 71%#37;, Palm River 67%#37;, Safety Harbor 30%#37;, and Skyway Fishing Pier 83%#37;, with an overall classification success of 66%#37;. These results suggest that the largest biomass component of the migratory pulse collected near the mouth of Tampa Bay was dominated by crabs originating from an area not widely harvested by commercial fishermen, as relatively few of the migrating females were matched to riverine locations that were intensively fished. Instead, most appeared to originate from open waters of Tampa Bay. It is possible that low densities of blue crab inhabiting a large area that is not commercially fished, effectively shields a proportion of the individuals in the Tampa Bay estuary from economic exploitation, creating a density-dependent natural harvest refugium.
20

Identification and characterization of Arabidopsis ECERIFERUM8 (CER8), a gene important for cuticular wax biosynthesis /

Song, Tao, January 1900 (has links)
Thesis (M.Sc.) - Carleton University, 2008. / Includes bibliographical references (p. 120-144). Also available in electronic format on the Internet.

Page generated in 0.047 seconds