• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 12
  • 11
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 65
  • 65
  • 20
  • 20
  • 19
  • 18
  • 17
  • 13
  • 12
  • 12
  • 11
  • 10
  • 9
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analytical model for force prediction when machining metal matrix composites

Sikder, Snahungshu 01 September 2010 (has links)
Metal Matrix Composites (MMC) offer several thermo-mechanical advantages over standard materials and alloys which make them better candidates in different applications. Their light weight, high stiffness, and strength have attracted several industries such as automotive, aerospace, and defence for their wide range of products. However, the wide spread application of Meal Matrix Composites is still a challenge for industry. The hard and abrasive nature of the reinforcement particles is responsible for rapid tool wear and high machining costs. Fracture and debonding of the abrasive reinforcement particles are the considerable damage modes that directly influence the tool performance. It is very important to find highly effective way to machine MMCs. So, it is important to predict forces when machining Metal Matrix Composites because this will help to choose perfect tools for machining and ultimately save both money and time. This research presents an analytical force model for predicting the forces generated during machining of Metal Matrix Composites. In estimating the generated forces, several aspects of cutting mechanics were considered including: shearing force, ploughing force, and particle fracture force. Chip formation force was obtained by classical orthogonal metal cutting mechanics and the Johnson-Cook Equation. The ploughing force was formulated while the fracture force was calculated from the slip line field theory and the Griffith theory of failure. The predicted results were compared with previously measured data. The results showed very good agreement between the theoretically predicted and experimentally measured cutting forces. / UOIT
2

切削力モデルに基づくエンドミル加工状態の知的認識 (データベースを必要としない手法の開発)

社本, 英二, SHAMOTO, Eiji, 樋野, 励, HINO, Rei, 梅崎, 雅之, UMESAKI, Masayuki, 森脇, 俊道, MORIWAKI, Toshimichi 07 1900 (has links)
No description available.
3

A New Procedure for Specific Cutting Force Assessment in High-Speed End Milling

Omar , Omar 04 1900 (has links)
<p> High-speed machining (HSM) concepts were developed in response to productivity, quality and cost concerns. Significant advancements in controls and machining technologies have recently come together to enable the wide spread use of HSM on the plant floor. However, with the advancement of HSM technology, dynamic problems associated with modern machine-tool structures have not been fully addressed and are currently limiting performance in some applications. <p> A key aspect in the modelling of HSM processes is capturing the dynamics of the system during cutting. Machining over a wide range of rotational speeds necessitates the inclusion of many more higher modes in the system than traditionally considered. In addition many of the instruments used to assess performance such as force dynamometers are not designed to measure the cutting forces at high rotational speeds and hence the specific cutting force values being used are often times not being estimated properly. </p> <p> Thus the focus of this research is to develop a new procedure for predicting the specific cutting forces in the end-milling process for high-speed machining. An improved mechanistic model to predict the specific cutting force using acceleration data captured from the workpiece fixture was developed. The development of the new procedure has also lead to an improvement in the extraction technique used to establish the modal parameters of a machining system. This new extraction technique was found to be more flexible and easier to use than other available techniques. </p> <p> The new procedure was investigated to test the effect of choosing the number of modes of the improved modal parameters extraction technique on the estimation of the specific cutting force. The effect of filtrating the acceleration signal and the importance of including the run-out of the cutting tool in the model were also investigated. </p> <p> The new procedure was tested on different setups and with different cutting force models. Experimental validation of the proposed estimation procedure was carried out, analyzed and compared to the open literature. The new procedure was found to be more accurate while being easier to implement. </p> / Thesis / Doctor of Philosophy (PhD)
4

Silové zatížení řezných nástrojů při obrábění / Force loading of cutting tools during the machining process

Vančura, Tomáš January 2020 (has links)
The theoretical part of the diploma thesis summarizes a knowledge of the force loading of the cutting tools and state of the art in the cutting force measurement. In the experimental part, work deals with the development of the software for a force records analysis. The main objective of the software is to automatise the processing and analysis of the measured force records. The functionality of the newly created software was verified by evaluating the circle-segment end mills experiments performed at the Institute of Manufacturing Technology of the Faculty of Mechanical Engineering, BUT.
5

Investigation on the multiscale multiphysics based approach to modelling and analysis of precision machining of metal matrix composites (MMCs) and its application perspectives

Niu, Zhichao January 2018 (has links)
Over the last two decades or so, metal matrix composites (MMCs) have been drawing the attention of the industry due to their potentials in fulfilling demands for high performance industrial materials, products and advanced engineering applications. On the other hand, the high precision machining is becoming one of the most effective methods for enabling these difficult-to-machine composites to be applied particularly in precision engineering. Therefore, in-depth scientific understanding of MMC precision machining is essential and much needed so as to fulfil the gap between fundamental issues in precision machining of MMCs and their industrial scale applications. This thesis focuses on development of a multiscale multiphysics based approach to investigating the machinability of particulate MMCs and the machining process optimisation. In order to investigate the surface generation in relation to the process variables, this PhD study covers the key fundamental issues including chip formation process, dynamic cutting force, cutting temperature partition and tool wear by means of combining modelling, simulation and experimental study. The chip formation mechanisms and the minimum chip thickness in precision machining of SiCp/Al and B4Cp/Al MMCs by using PCD tools are investigated through a holistic approach. Minimum chip thickness (MCT) value is firstly identified based on the modified mathematical model. The certain threshold of the uncut chip thickness, i.e. chips starting to form at this chip thickness point, is then established. The chip formation process including the matrix material breakage, particles fracture, debonding, sliding or removal and their interfacial interactions are further simulated using finite element analysis (FEA). The minimum chip thickness and chip formation simulations are evaluated and validated via well-designed experimental trials on a diamond turning machine. The chips and surface profiles formed under varied process variables in periodic material removals are inspected and measured in order to obtain a better understanding on MMC chip formation mechanisms. The improved dynamic cutting force model is developed based on the micro cutting mechanics involving the size effect, undeformed chip thickness effects and the influence of cutting parameters in the micro scale. Cutting process variables, particle form, size and volume fraction at different scales are taken into account in the modelling. The cutting force multiscale modelling is proposed to have a better understanding on the MMCs cutting mechanics and to predict the cutting force accurately. The cutting forces are modelled and analysed in three cutting regimes: elastic recovery zone, ploughing zone and shearing zone. A novel instantaneous chip thickness algorithm including real chip thickness and real tool trajectory is developed by taking account of the tool runout. Well-designed cutting trials are carried out under varied process variables to evaluate and validate the force model. In order to obtain the actual cutting forces accurately, transfer function technique is employed to compensate the measured cutting forces. The cutting force model is further applied to correlate the cutting tool wear and the prediction of the machined surface generation. Multiphysics coupled thermal-mechanical-tribological model and FE analysis are developed to investigate the cutting stress, cutting temperature, tool wear and their intrinsic relationships in MMCs precision machining process. Heat generation, heat transfer and cutting temperature partition in workpiece, chips and cutting tool are simulated. A modified tool wear rate model is proposed, tool wear characteristics, wear mechanisms and dominate tool wear are further investigated against the real machining process. Cutting tool wear is monitored and assessed offline after machining experiments. The experimental study on the machined surface generation is presented covering cutting force, tool wear, tool life, surface roughness and machining efficiency. Process optimisation is explored by considering the variation of cutting parameters, cutting tool conditions and workpiece materials in order to achieve the desired outcomes and machinability.
6

FAILURE PREDICTION AND STRESS ANALYSIS OF MICROCUTTING TOOLS

Chittipolu, Sujeev 2009 May 1900 (has links)
Miniaturized devices are the key producing next-generation microelectro-mechanical products. The applications extend to many fields that demand high-level tolerances from microproducts and component functional and structural integrity. Silicon-based products are limited because silicon is brittle. Products can be made from other engineering materials and need to be machined in microscale. This research deals with predicting microtool failure by studying spindle runout and tool deflection effects on the tool, and by measuring the cutting force that would fail the tool during microend-milling. End-milling was performed using a tungsten carbide (Ø1.016 mm dia., 2 flute) tool on SS-316L material. Tool runout measured using a laser was found to be less than 1 µm and tool deflection at 25000 rpm was 20 µm. Finite element analysis (FEA) predicts tool failure due to static bending for a deflection greater than 99% of tool diameter. Threshold values of chipload and cutting force resulting in tool failure were found using workdone by tool. Threshold values to predict tool failure were suggested for axial depth of cut in between 17.25% - 34.5% of cutter length. For a chipload greater than 20% of cutter diameter, the microtool fails instantly for any radial depth of cut.
7

Estimation of flank wear growth on coated inserts

Latifzada, Mushtaq Ahmad January 2013 (has links)
The present work was conducted in Sandvik Coromant to enhance the knowledge and understanding of general flank wear growth and specifically in this case flank wear growth on the cutting edge of the coated (Ti(C, N)/ Al2O3/ TiN) tool inserts.   Reliable modeling of tool life is always a concern for machining processes. Numbers of wear models studies predicting the tool life length have been created throughout the metal-cutting history to better predict and thereby control the tool life span, which is a major portion of the total cost of machining.   A geometrical contact model defining the geometry of the flank wear growth on the cutting tool inserts was proposed and then compared with four suggested models, which estimates flank wear. The focus of this work is on the initial growth of flank wear process and thereby short cutting-time intervals are measured.   Wear tests on cutting tool inserts were performed after orthogonal turning of Ovako 825 B steel and were analysed by optical instrument, 3D optical imaging in Alicona InfiniteFocus and EDS in SEM. Force measurements for cutting speeds, Vc, 150, 200, and 250 m/min and feed rate, fn, 0.15 mm/rev were recorded as well.   Results show that initial flank wear land, VB, growth is dominated by sliding distance per cutting length for different cutting speeds. A good correlation between the geometrical contact model and estimation models is indentified. The cutting force measurements compared with the flank wear land show proportionality between two parameters. For the machining data in the present study the flank wear rate per sliding distance, dW/dL, is estimated to 2x103 (μ3/m).
8

Predikce sil a kvality opracování při frézování s vysokými posuvy / Prediction of cutting forces and quality of surface when milling with high feeds

Mikel, Pavel January 2013 (has links)
Theoretical study describes force analysis and quality of surface when milling. In the experiment the emphasis is on determining forces and surface quality in milling in response to changes in feed rate. Especially determination of specific cutting force kc and cutting force Fc at materials from aluminium alloy AlSi9Cu3, titanium alloy Ti6Al4V and steel C45, the used tool was a milling cutter for high feeds. In the experimental section is furthermore contained statistical evaluation data which demonstrate a certain prediction changes of cutting load and surface roughness when changing feeds.
9

Modeling and experimental investigation on ultrasonic-vibration-assisted grinding

Qin, Na January 1900 (has links)
Doctor of Philosophy / Department of Industrial & Manufacturing Systems Engineering / Zhijian Pei / Poor machinability of hard-to-machine materials (such as advanced ceramics and titanium) limits their applications in industries. Ultrasonic-vibration-assisted grinding (UVAG), a hybrid machining process combining material-removal mechanisms of diamond grinding and ultrasonic machining, is one cost-effective machining method for these materials. Compared to ultrasonic machining, UVAG has much higher material removal rate while maintaining lower cutting pressure and torque, reduced edge chipping and surface damage, improved accuracy, and lower tool wear rate. However, physics-based models to predict cutting force in UVAG have not been reported to date. Furthermore, edge chipping is one of the technical challenges in UVAG of brittle materials. There is no report related to effects of cutting tool design on edge chipping in UVAG of brittle materials. The goal of this research is to provide new knowledge of machining these hard-to-machine materials with UVAG for further improvements in machining cost and surface quality. First, a thorough literature review is given to show what has been done in this field. Then, a physics-based predictive cutting force model and a mechanistic cutting force model are developed for UVAG of ductile and brittle materials, respectively. Effects of input variables (diamond grain number, diamond grain diameter, vibration amplitude, vibration frequency, spindle speed, and federate) on cutting force are studied based on the developed models. Interaction effects of input variables on cutting force are also studied. In addition, an FEA model is developed to study effects of cutting tool design and input variables on edge chipping. Furthermore, some trends predicted from the developed models are verified through experiments. The results in this dissertation could provide guidance for choosing reasonable process variables and designing diamond tools for UVAG.
10

The impact of tool performance on micromachining capability

Zdebski, Daniel January 2012 (has links)
Micro-milling represents a versatile and fast manufacturing process suitable for production of fully 3D micro-components. Such components are demanded for a vast number of industrial applications including safety systems, environmental sensors, personalized medical devices or micro-lenses and mirrors. The ability of micro-milling to process a wide range of materials makes it one of the best candidates to take a leading position in micromanufacturing. However, so far it does not seem to happen. By discussion with various industrialists, low predictability of micro-milling process was identified as the major limiting factor. This is mainly because of strong effects of the tool tolerances and process uncertainties on machining performance. Although, these issues are well known, they are not reflected by the current modelling methods used in micro-milling. Therefore, the research presented in this thesis mainly concentrates on development of a method allowing a prediction of the tool life in manner of tool breakage probability. Another important criterion which must be fulfilled is the method applicability to industrial applications. This means that the method must give sufficiently accurate prediction in reasonable time with minimum effort and interactions with day-to-day manufacturing process. The criteria listed above led to development of a new method based on analytically/numerical modelling techniques combined with an analysis of real tool variations and process uncertainty. Although, the method is presented in a relatively basic form, without considering some of the important factors, it shows high potential for industrial applications. Possibility of further implementation of additional factors is also discussed in this thesis. Additionally, some of the modelling techniques presented in this thesis are assumed to be suitable for application during designing of micro end-mills. Therefore, in the last part of this thesis is presented a systematic methodology for designing of micro end-mills. This method is based on knowledge and experience gained during this research.

Page generated in 0.0632 seconds