Spelling suggestions: "subject:"cutting plant"" "subject:"cutting plans""
31 |
Méthode de génération de colonnes pour les problèmes de conception de réseaux avec coûts d’ajout de capacitéEl Filali, Souhaïla 05 1900 (has links)
Les problèmes de conception de réseaux ont reçu un intérêt particulier et ont été largement étudiés de par leurs nombreuses applications dans différents domaines, tels que les transports et les télécommunications.
Nous nous intéressons dans ce mémoire au problème de conception de réseaux avec coûts d’ajout de capacité. Il s’agit d’installer un ensemble d’équipements sur un réseau en vue de satisfaire la demande, tout en respectant les contraintes de capacité, chaque arc pouvant admettre plusieurs équipements. L’objectif est de minimiser les coûts variables de transport des produits et les coûts fixes d’installation ou d’augmentation de capacité des équipements.
La méthode que nous envisageons pour résoudre ce problème est basée sur les techniques utilisées en programmation linéaire en nombres entiers, notamment celles de génération de colonnes et de coupes. Ces méthodes sont introduites dans un algorithme général de branch-and-bound basé sur la relaxation linéaire.
Nous avons testé notre méthode sur quatre groupes d’instances de tailles différentes, et nous l’avons comparée à CPLEX, qui constitue un des meilleurs solveurs permettant de résoudre des problèmes d’optimisation, ainsi qu’à une méthode existante dans la littérature combinant des méthodes exactes et heuristiques. Notre méthode a été plus performante que ces deux méthodes, notamment pour les instances de très grandes tailles. / Network design problems received a particular interest and have been widely studied because of their many applications in different areas, such as logistics and telecommunications.
We focus in this work on the multicommodity capacitated network design problem with capacity expansion costs. It consists in opening a set of facilities on a network in order to meet the demand of some commodities, while respecting the capacity constraints. Each arc can admit several facilities. The objective is to minimize the commodities transportation costs, and the fixed costs of opening or increasing the capacity of the facilities.
The method we are using to solve this problem is based on techniques used in integer programming, including column generation and cutting-plane methods. These methods are introduced into a general branch-and-bound algorithm, based on linear relaxation.
We test our method on four groups of instances of different sizes, and we compare it with CPLEX, which is one of the best solvers available for optimization problems. We compare it also with an existing method in the literature, combining exact and heuristic methods.
Numerical results show that our method was able to outperform both methods, especially when tested on large scale instances.
|
32 |
Algorithme de branch-and-price-and-cut pour le problème de conception de réseaux avec coûts fixes, capacités et un seul produitKéloufi, Ghalia K. 12 1900 (has links)
No description available.
|
33 |
Fixed cardinality linear ordering problem, polyhedral studies and solution methods / Problème d'ordre linéaire sous containte de cardinalité, étude polyédrale et méthodes de résolutionNeamatian Monemi, Rahimeh 02 December 2014 (has links)
Le problème d’ordre linéaire (LOP) a reçu beaucoup d’attention dans différents domaines d’application, allant de l’archéologie à l’ordonnancement en passant par l’économie et même de la psychologie mathématique. Ce problème est aussi connu pour être parmi les problèmes NP-difficiles. Nous considérons dans cette thèse une variante de (LOP) sous contrainte de cardinalité. Nous cherchons donc un ordre linéaire d’un sous-ensemble de sommets du graphe de préférences de cardinalité fixée et de poids maximum. Ce problème, appelé (FCLOP) pour ’fixed-cardinality linear ordering problem’, n’a pas été étudié en tant que tel dans la littérature scientifique même si plusieurs applications dans les domaines de macro-économie, de classification dominante ou de transport maritime existent concrètement. On retrouve en fait ses caractéristiques dans les modèles étendus de sous-graphes acycliques. Le problème d’ordre linéaire est déjà connu comme un problème NP-difficile et il a donné lieu à de nombreuses études, tant théoriques sur la structure polyédrale de l’ensemble des solutions réalisables en variables 0-1 que numériques grâce à des techniques de relaxation et de séparation progressive. Cependant on voit qu’il existe de nombreux cas dans la littérature, dans lesquelles des solveurs de Programmation Linéaire en nombres entiers comme CPLEX peuvent en résoudre certaines instances en moins de 10 secondes, mais une fois que la cardinalité est limitée, ces mêmes instances deviennent très difficiles à résoudre. Sur les aspects polyédraux, nous avons étudié le polytope de FCLOP, défini plusieurs classes d’inégalités valides et identifié la dimension ainsi que certaines inégalités qui définissent des facettes pour le polytope de FCLOP. Nous avons introduit un algorithme Relax-and-Cut basé sur ces résultats pour résoudre les instances du problème. Dans cette étude, nous nous sommes également concentrés sur la relaxation Lagrangienne pour résoudre ces cas difficiles. Nous avons étudié différentes stratégies de relaxation et nous avons comparé les bornes duales par rapport à la consolidation obtenue à partir de chaque stratégie de relâcher les contraintes afin de détecter le sous-ensemble des contraintes le plus approprié. Les résultats numériques montrent que nous pouvons trouver des bornes duales de très haute qualité. Nous avons également mis en place une méthode de décomposition Lagrangienne. Dans ce but, nous avons décomposé le modèle de FCLOP en trois sous-problèmes (au lieu de seulement deux) associés aux contraintes de ’tournoi’, de ’graphes sans circuits’ et de ’cardinalité’. Les résultats numériques montrent une amélioration significative de la qualité des bornes duales pour plusieurs cas. Nous avons aussi mis en oeuvre une méthode de plans sécants (cutting plane algorithm) basée sur la relaxation pure des contraintes de circuits. Dans cette méthode, on a relâché une partie des contraintes et on les a ajoutées au modèle au cas où il y a des de/des violations. Les résultats numériques montrent des performances prometteuses quant à la réduction du temps de calcul et à la résolution d’instances difficiles hors d’atteinte des solveurs classiques en PLNE. / Linear Ordering Problem (LOP) has receive significant attention in different areas of application, ranging from transportation and scheduling to economics and even archeology and mathematical psychology. It is classified as a NP-hard problem. Assume a complete weighted directed graph on V n , |V n |= n. A permutation of the elements of this finite set of vertices is a linear order. Now let p be a given fixed integer number, 0 ≤ p ≤ n. The p-Fixed Cardinality Linear Ordering Problem (FCLOP) is looking for a subset of vertices containing p nodes and a linear order on the nodes in S. Graphically, there exists exactly one directed arc between every pair of vertices in an LOP feasible solution, which is also a complete cycle-free digraph and the objective is to maximize the sum of the weights of all the arcs in a feasible solution. In the FCLOP, we are looking for a subset S ⊆ V n such that |S|= p and an LOP on these S nodes. Hence the objective is to find the best subset of the nodes and an LOP over these p nodes that maximize the sum of the weights of all the arcs in the solution. Graphically, a feasible solution of the FCLOP is a complete cycle-free digraph on S plus a set of n − p vertices that are not connected to any of the other vertices. There are several studies available in the literature focused on polyhedral aspects of the linear ordering problem as well as various exact and heuristic solution methods. The fixed cardinality linear ordering problem is presented for the first time in this PhD study, so as far as we know, there is no other study in the literature that has studied this problem. The linear ordering problem is already known as a NP-hard problem. However one sees that there exist many instances in the literature that can be solved by CPLEX in less than 10 seconds (when p = n), but once the cardinality number is limited to p (p < n), the instance is not anymore solvable due to the memory issue. We have studied the polytope corresponding to the FCLOP for different cardinality values. We have identified dimension of the polytope, proposed several classes of valid inequalities and showed that among these sets of valid inequalities, some of them are defining facets for the FCLOP polytope for different cardinality values. We have then introduced a Relax-and-Cut algorithm based on these results to solve instances of the FCLOP. To solve the instances of the problem, in the beginning, we have applied the Lagrangian relaxation algorithm. We have studied different relaxation strategies and compared the dual bound obtained from each case to detect the most suitable subproblem. Numerical results show that some of the relaxation strategies result better dual bound and some other contribute more in reducing the computational time and provide a relatively good dual bound in a shorter time. We have also implemented a Lagrangian decomposition algorithm, decom-6 posing the FCLOP model to three subproblems (instead of only two subproblems). The interest of decomposing the FCLOP model to three subproblems comes mostly from the nature of the three subproblems, which are relatively quite easier to solve compared to the initial FCLOP model. Numerical results show a significant improvement in the quality of dual bounds for several instances. We could also obtain relatively quite better dual bounds in a shorter time comparing to the other relaxation strategies. We have proposed a cutting plane algorithm based on the pure relaxation strategy. In this algorithm, we firstly relax a subset of constraints that due to the problem structure, a very few number of them are active. Then in the course of the branch-and-bound tree we verify if there exist any violated constraint among the relaxed constraints or. Then the characterized violated constraints will be globally added to the model. (...)
|
34 |
ON-MACHINE MEASUREMENT OF WORKPIECE FORM ERRORS IN ULTRAPRECISION MACHININGGomersall, Fiona January 2016 (has links)
Ultraprecision single point diamond turning is required to produce parts with sub-nanometer surface roughness and sub-micrometer surface profiles tolerances. These parts have applications in the optics industry, where tight form accuracy is required while achieving high surface finish quality. Generally, parts can be polished to achieve the desired finish, but then the form accuracy can easily be lost in the process rendering the part unusable.
Currently, most mid to low spatial frequency surface finish errors are inspected offline. This is done by physically removing the workpiece from the machining fixture and mounting the part in a laser interferometer. This action introduces errors in itself through minute differences in the support conditions of the over constrained part on a machine as compared to the mounting conditions used for part measurement. Once removed, the fixture induced stresses and the part’s internal residual stresses relax and change the shape of the generally thin parts machined in these applications. Thereby, the offline inspection provides an erroneous description of the performance of the machine.
This research explores the use of a single, high resolution, capacitance sensor to quickly and qualitatively measure the low to mid spatial frequencies on the workpiece surface, while it is mounted in a fixture on a standard ultraprecision single point diamond turning machine after a standard facing operation. Following initial testing, a strong qualitative correlation exists between the surface profiling on a standard offline system and this online measuring system. Despite environmental effects and the effects of the machine on the measurement system, the capacitive system with some modifications and awareness of its measurement method is a viable option for measuring mid to low spatial frequencies on a workpiece surface mounted on an ultraprecision machine with a resolution of 1nm with an error band of ±5nm with a 20kHz bandwidth. / Thesis / Master of Applied Science (MASc)
|
Page generated in 0.09 seconds