• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Organic Carbon in Hydrothermal Systems: From Phototrophy to Aldehyde Transformations

January 2016 (has links)
abstract: Hydrothermal environments are important locales for carbon cycling on Earth and elsewhere in the Universe. Below its maximum temperature (~73 °C), microbial photosynthesis drives primary productivity in terrestrial hydrothermal ecosystems, which is thought to be performed by bacterial phototrophs in alkaline systems and eukaryotic algae in acidic systems, yet has received little attention at pH values intermediate to these extremes. Sequencing of 16S and 18S rRNA genes was performed at 12 hot springs with pH values 2.9-5.6 and revealed that cyanobacteria affiliated with the genus Chlorogloeopsis and algae of the order Cyanidiales coexisted at 10 of the sites. Cyanobacteria were present at pH values as low as 2.9, which challenges the paradigm of cyanobacteria being excluded below pH 4. Presence of the carotenoid β-cryptoxanthin in only 2 sites and quantitative PCR data suggest that algae were inactive at many of the sites when sampled. Spatial, but perhaps not temporal, overlap in the habitat ranges of bacterial and eukaryal microbial phototrophs indicates that the notion of a sharp transition between these lineages with respect to pH is untenable. In sedimentary basins, biosphere-derived organic carbon is subjected to abiotic transformations under hydrothermal conditions. Benzaldehyde was experimentally evaluated as a model to assess the chemistry of aldehydes under these conditions. It was first demonstrated that gold, a traditional vessel material for hydrothermal experiments, caused catalysis of benzaldehyde degradation. Experiments in silica tubes were performed at 250, 300, and 350 °C yielding time-dependent data at several starting concentrations, which confirmed second-order kinetics. Therefore, disproportionation was expected as a major reaction pathway, but unequal yields of benzoic acid and benzyl alcohol were inconsistent with that mechanism. Consideration of other products led to development of a putative reaction scheme and the time dependencies of these products were subjected to kinetic modeling. The model was able to reproduce the observed yields of benzoic acid and benzyl alcohol, indicating that secondary reactions were responsible for the observed ratios of these products. Aldehyde disproportionation could be an unappreciated step in the formation of carboxylic acids, which along with hydrocarbons are the most common organic compounds present in natural systems. / Dissertation/Thesis / Doctoral Dissertation Chemistry 2016
2

Using PCR Amplification and Genetic Sequence Analysis of 18S rRNA Genes to Survey the Microbial Diversity and Distribution of Eukaryotic Microbes Inhabiting Two Thermo-acidic Streams in Yellowstone National Park, Wyoming

Harvey, Robert, Jr. 06 August 2009 (has links)
A cultivation-independent approach, sequence analysis of 18S rRNA genes PCR-amplified from environmental DNA, was used to explore the diversity and distribution of eukaryotic microbes inhabiting algal mats in two acidic geothermal streams in Yellowstone National Park. The objectives were to: (1) clarify the identity of mat forming algae in Nymph Creek (2) survey microbial species in the Nymph Creek mat over seasonal intervals along a thermal gradient (3) compare microbial species in the Nymph Creek mat with those in Alluvium Creek mats (4) evaluate microbial species in algal mats formed on different substrates in Alluvium Creek. The results show that a novel red alga dominates high temperature regions (~50ºC) of Nymph Creek and two "Chlorella-like" algae predominate the cooler regions (<38ºC). The predominant algae in Alluvium Creek were distinctly different from those in Nymph Creek. Several stramenophiles and fungi were detected in each algal mat.

Page generated in 0.0426 seconds