Spelling suggestions: "subject:"cyclic aymmetry"" "subject:"cyclic asymmetry""
1 |
Modal Analysis of General Cyclically Symmetric Systems with Applications to Multi-Stage StructuresDong, Bin 10 October 2019 (has links)
This work investigates the modal properties of general cyclically symmetric systems and the multi-stage systems with cyclically symmetric stages. The work generalizes the modal properties of engineering applications, such as planetary gears, centrifugal pendulum vibration absorber (CPVA) systems, multi-stage planetary gears, etc., and provides methods to improve the computational efficiency to numerically solve the system modes when cyclically symmetric structures exist.
Modal properties of cyclically symmetric systems with vibrating central components as three-dimensional rigid bodies are studied without any assumptions on the system matrix symmetries: asymmetric inertia matrix, damping, gyroscopic, and circulatory terms can be present. In the equation of motion of such a cyclically symmetric system, the matrix operators are proved to have properties related to the cyclic symmetry. These symmetry-related properties are used to prove the modal properties of general cyclically symmetric systems. Only three types of modes can exist: substructure modes, translational-tilting modes, and rotational-axial modes. Each mode type is characterized by specific central component modal deflections and substructure phase relations. Instead of solving the full eigenvalue problem,all vibration modes and natural frequencies can be obtained by solving smaller eigenvalue problems associated with each mode type. This computational advantage is dramatic for systems with many substructures or many degrees of freedom per substructure.
Group theory is applied to further generalize the modal properties of cyclically symmetric systems when both rigid-body and compliant central components exist, such as planetary gears with an elastic continuum ring gear. The group theory for symmetry groups is introduced, and the group-theory-based modal analysis does not rely on any knowledge of the properties of system matrices in system equations of motion. The three types of modes (substructure modes, translational-tilting modes, and rotational-axial modes) are characterized by specific rigid-body central component modal defections, substructure phase relations, and nodal diameter components of compliant central components. The general formulation of reduced eigenvalue problems for each mode type is obtained through group-theory-based method, and it applies to discrete, continuous, or hybrid discrete-continuous cyclically symmetric systems. The group-theory-based modal analysis also applies to systems with other symmetry types.
The group-theory-based modal analysis is generalized to analyze the multi-stage systems that are composed of symmetric stages coupled through the motions of rigid-body central components. The proposed group-theory-based modal analysis applies to multi-stage systems with cyclically symmetric stages, such as multi-stage planetary gears and CPVA systems with multiple groups of absorbers. The method also applies to multi-stage systems with component stages that have different types of symmetry. For a multi-stage system with symmetric stages, a unitary transformation matrix can be built through an algorithmic and computationally inexpensive procedure. The obtained unitary transformation matrix provides the foundation to analyze the modal properties based on the principles of group-theory-based modal analysis. For general multi-stage systems with symmetric component stages, the vibration modes are classified into two general types, single-stage substructure modes and overall modes, according to the non-zero modal deflections in each component stage. Reduced eigenvalue problems for each mode type are formulated to reduce the computational cost for eigensolutions.
Finite element models of multi-stage bladed disk assemblies consist of multiple cyclically symmetric bladed disks that are coupled through the boundary nodes at the inter-stage interface. To improve the computational efficiency of calculating the full system modes, a numerical method is proposed by combination of the multi-stage cyclic symmetry reduction method and the subspace iteration method. Compared to the multi-stage cyclic symmetry reduction method, the proposed method improves the accuracy of obtained eigensolutions through an iterative process that is derived from the subspace iteration method. Based on the cyclic symmetry in each component stage of bladed disk, the proposed iterative method that can be performed using single stage sector models only, instead of using matrix operators for the full multi-stage bladed disks. Parallel computations can be performed in the proposed iterative method, and the computational speed for eigensolutions can be increased significantly. / Doctor of Philosophy / Cyclically symmetric structures exist in many engineering applications such as bladed disks, circular plates, planetary gears, centrifugal pendulum vibration absorbers (CPVA), etc. During steady operation, these cyclically symmetric systems are subjected to traveling wave dynamic loading. Component vibrations result in undesirable effects, including high cycle fatigue (HCF) failure, noise, performance reduction, etc. Knowledge of the modal properties of cyclically symmetric systems is helpful to analyze the system forced response and understand experimental modal testing.
In this work, single stage cyclically symmetric systems are proved to have highly structured modes. The single stage systems considered in this work can have both rigid bodies and elastic continua as components. Group theory is used to study the modal properties, including the system mode types and the characteristics of different mode types. All the vibration modes of single stage cyclically symmetric systems can be solved from reduced eigenvalue problems. The methodology also applies to systems with other types of symmetry. For multi-stage systems with cyclically symmetric substructures, such as multi-stage planetary gears, a group-theory-based method is developed to analyze the modal properties. For industrial applications, such as multi-stage bladed disk assemblies, this work develops an iterative method to facilitate the calculations of system modes. The modal properties and methods for solving system modes apply to mechanical systems, including CPVA systems, the single/multi-stage planetary gears in power transmission systems, bladed disk assemblies in turbines, circular plates, elastic rings, etc.
|
2 |
Multi-level parametric reduced models of rotating bladed disk assemblies / Réductions multi-niveaux appliquées à la dynamique d'ensemble des turbomachinesSternchüss, Arnaud 08 January 2009 (has links)
Les disques aubagés, que l’on trouve dans les turbomachines, sont des structures complexes dont le comportement vibratoire est généralement déterminé par l’exploitation de conditions de symétrie dans leur configuration nominale. Cette symétrie disparaît lorsque l’on assemble plusieurs de ces disques pour former un rotor ou que l’on introduit une variabilité spatiale des paramètres mécaniques (on parle de désaccordage intentionnel ou non). Le raffinement des maillages, nécessaire à une évaluation correcte de la répartition des contraintes, conduirait à des modèles de rotor complet de taille prohibitive (plusieurs dizaines de millions de degrés de liberté). L’objectif de cette thèse est donc l’introduction de méthodologies de réduction qui par combinaison de calculs acceptables permettent d’étudier de façon fine la dynamique d’ensemble sur des modèles 3D fins multi-étages et potentiellement désaccordés. L’étude des transformations de Fourier séparées des réponses de chaque étage permet, dans un premier temps, de bien comprendre les effets de couplage inter-harmonique liés au couplage inter-disque et au désaccordage. A partir de ce constat, une première méthode utilise les résultats de calculs en symétrie cyclique et à secteur encastré pour construire un modèle de secteur exact pour certains modes dits cibles et de très bonne qualité pour les autres modes. Cette méthode est ensuite étendue au cas multi-étage en construisant des bases de réduction de secteur par combinaison de solutions mono-harmoniques. Les illustrations montrent que la méthodologie proposée permet le traitement de modèles de très grande taille, tout en restant compatible avec une grande richesse de post-traitements (calculs de modes, calculs de réponses forcées, analyses de leur contenu harmonique spatial, répartition d’énergie et effets de localisation...). La méthodologie est enfin étendue à la gestion de modèles paramétrés en vitesse de rotation. L’enrichissement des ensembles de modes cibles par des calculs à trois vitesses permet ainsi une reconstruction rapide de l’évolution des fréquences pour l’ensemble d’un intervalle. / Bladed disks found in turbomachines are complex structures whose vibration characteristics are generally determined by exploiting the symmetry properties of their nominal configuration. This symmetry no longer exists either when disks are assembled to form a rotor or when discrepancies in the mechanical parameters are introduced (intentional or unintentional mistuning). Fine meshes required to correctly evaluate stress distributions would lead to prohibitive model sizes (typically a few million degrees of freedom). The objective of this thesis is to introduce model reduction techniques that rely on the combination of separate computations of acceptable size. This provides a means for in-depth studies of the behaviour of dense 3D models of multi-stage bladed rotors with possible mistuning. At first, Fourier transforms performed separately on each individual disk allows to understand the inter-harmonic coupling induced by inter-stage coupling and mistuning. From this study, a first method uses cyclically symmetric solutions plus sector modes with fixed inter-sector interfaces to build a reduced sector model. The latter is exact for target modes and very accurate for others. This method is extended to multi-stage assemblies by employing multi-stage mono-harmonic eigensolutions. Illustrations focus on the proposed methodology that enables to deal with large scale industrial models while remaining compatible with various post-processing procedures (free or forced response computations, analysis of their spatial harmonic content, energy distributions and localization effects...). This methodology is finally extended to the handling of parametric models depending on the rotation speed. The enrichment of the initial sets of target vectors with computations at three rotation speeds enables a fast and accurate recovery of the evolution of the eigenfrequencies with respect to the rotation speed in any operating range.
|
3 |
Analýza modálních vlastností lopatkové řady s lopatkami svázanými Z-vazbou / Modal Analysis of the Blades Row Tied with Z-tieValoušek, Tomáš January 2014 (has links)
This thesis is about modal analysis of the rotor blades row tied with Z-tie. Thesis was solved by finite element system ANSYS. Cyclic symmetry was used in this thesis with the aim of obtain eigen frequency of bladed disc. The next aim of this thesis was to find eigen frequency of the free rotor blades and to compare it with frequency obtained from experiment. 3D model was created by 3D scanner and CAD system CATIA.
|
4 |
Frekvenčně modální analýza lopatkového svazku parní turbíny / Frequency modal analysis of blade package of steam turbinePřikryl, František January 2009 (has links)
This thesis deals with comparison the results of the frequency modal analysis of blade package of steam turbine with stiffening or damping bounding elements. Computational model was created through the finite element method, using cyclical symmetry. The results were compared with experimental analysis and analysis in VIPACK programme. Thesis also contains creating the solid blade model, using the reverse engineering.
|
5 |
Deformačně-napěťová analýza axiálního turbínového kola turbovrtulového motoru / Stress-strain analysis of the axial turbine of turboprop engineKolárik, Matej January 2014 (has links)
This diploma thesis deals with a creation and subsequent analysis of the computational model of the turboprop engine's turbine designed by Prvá Brněnská Strojírna Velká Bíteš. The computational model is created and solved in the finite element model system ANSYS. A cyclic symmetry is taken into account during the solution. The static analysis of the turbine was carried out in objective to quatify prestress effects which are caused by a rotation, higher temperature and an excitation from stator blades. These prestress effects were used in the modal analysis of the turbine. Harmonic analysis were calculated to simulate an operation conditions and a resonance state. The results of these analysis indicate that the higher temperature has the biggest impact on the properties of the turbine. It is also shown, that during the operation of the engine the turbine runs in the mode which is not even close to the resonance state.
|
6 |
On efficient and adaptive modelling of friction damping in bladed disksAfzal, Mohammad January 2017 (has links)
This work focuses on efficient modelling and adaptive control of friction damping in bladed disks. To efficiently simulate the friction contact, a full-3D time-discrete contact model is reformulated and an analytical expression for the Jacobian matrix is derived that reduces the computation time drastically with respect to the classical finite difference method. The developed numerical solver is applied on bladed disks with shroud contact and the advantage of full-3D contact model compared to a quasi-3D contact model is presented. The developed numerical solver is also applied on bladed disks with strip damper and multiple friction contacts and obtained results are discussed. Furthermore, presence of higher harmonics in the nonlinear contact forces is analyzed and their effect on the excitation of the different nodal diameters of the bladed disk are systematically presented. The main parameters that influence the effectiveness of friction damping in bladed disks are engine excitation order, contact stiffnesses, friction coefficient, relative motion at the friction interface and the normal contact load. Due to variation in these parameters during operation, the obtained friction damping in practice may differ from the optimum value. Therefore, to control the normal load adaptively that will lead to an optimum damping in the system despite these variations, use of magnetostrictive actuator is proposed. The magnetostrictive material that develops an internal strain under the influence of an external magnetic field is employed to increase and decrease the normal contact load. A linearized model of the magnetostrictive actuator is used to characterize the magnetoelastic behavior of the actuator. A nonlinear static contact analysis of the bladed disk reveals that a change of normal load more than 700 N can be achieved using a reasonable size of the actuator. This will give a very good control on friction damping once applied in practice. / <p>QC 20170310</p> / TurboPower
|
7 |
Modální analýza turbínového kola pro letecký motor / Modal analysis of turbine wheel for aircraft engineDrahý, Jan January 2010 (has links)
The master thesis deals with modal analysis of turbine wheel of aircraft engine. The first part is concerned with the modal analysis of the computational model of turbine wheel and separated turbine blade using the cyclic symmetry of the ANSYS software. This part of the thesis set the task of determining the natural frequency depending on the operating parameters of the motor. The second part of the thesis occupies with the experimental simulation of the task. The results of experimental simulation are verified and compared with the results from the computational modal analysis. The goal is to create a Campbell diagram and to determine the intervals of the critical revolution of the turbine wheel.
|
8 |
Fundamental Understanding of Blisk Analytical ResponseBeck, Joseph A. 29 May 2013 (has links)
No description available.
|
Page generated in 0.0348 seconds