• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 5
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 64
  • 64
  • 19
  • 17
  • 16
  • 10
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Synthesis and applications of functional magnetic polymer beads; synthesis and mass spectrometry analysis of model peptides

Zhao, Xiaoning 01 January 2012 (has links)
The first part of the thesis describes the synthesis and application of functional magnetic polymer beads. The traditional suspension polymerization approach was used to synthesize polystyrene-iron oxide (Fe 3 O 4 ) based magnetic beads. The beads were coupled to different surface functional groups. The Fe 3 O 4 particles were encapsulated into a polystyrene shell. The surface functional groups were generated by graft-polymerization with functional monomers. The average size of the beads was in the range of 100-500 μm. Chemical tests showed that the beads were stable in strong acid, strong base and polar solvent. The beads had a fast response to an external magnetic field. A self-emulsion-polymerization approach was developed to synthesize smaller magnetic beads with the - OH groups on the surface. A modified approach based on traditional suspension-polymerization was developed to synthesize acid-durable beads with more Fe 3 O 4 encapsulated inside the beads. A novel emulsion-suspension polymerization method was successfully developed to synthesize much smaller magnetic beads ( A new peptide synthesis approach was developed using functional magnetic beads as the resin for solid phase synthesis. In this application, synthesized magnetic beads were further modified by a two-step reaction. The amino group was anchored onto the surface of these beads, followed by coupling with the Rink amide linker. The resulting beads were used as the resin to synthesize several model peptides. The peptides were successfully synthesized, and the sequences were confirmed by mass spectrometry analysis. The yields of the peptides were comparable to those obtained from commercial Rink amide resin. The second part of the thesis describes the synthesis and mass spectrometry analysis of two series of model peptides. One series has the linear (non-cyclic) structure, A n K, KA n , P n K, and AcA n K. The other series contains cyclic peptides, c-Ac-DAKAK and c-Ac-DADapAK. All peptides were synthesized using solid phase peptide synthesis. The relative proton affinities of the model peptides were measured using the collision induced dissociation experiments using a triple quadrupole mass spectrometer. It was found that the effective proton affinity of a cyclic peptide was significantly reduced compared to a linear analogue. The reduced proton affinity implies an increased lipophilicity of the peptide.
62

One Bead One Compound Screening for Cyclic Peptide Binding Partners

Utterström, Johanna January 2018 (has links)
In recent years a significant research focus has been on the development of biomimicking three-dimensional substrates for cell culturing. Hydrogels mimicking the extracellular matrix is a well-suited scaffold for this purpose and there are many different ways these can be cross-linked to retain their shape. The group of Molecular Materials at IFM, Linköping University, is focusing on the development of physical hydrogels hybridized through peptide-peptide interactions but all peptides used for this today are created using rational design and on top of this very large, making them time-consuming and expensive to fabricate. The aim of this project was to evaluate if One Bead One Compound (OBOC) libraries could be used as an alternative to rational design in the finding of cyclic peptide binding partners used in the hybridization of hydrogels. The results were not very promising though since only seven peptides passed all screening steps and of these only two could be sequenced. Of these two, only one was water soluble enough to enable binding interactions analysis but was then found to be a false hit. Nevertheless, it should be noticed that only a fraction of all possible combinations was screened and the results cannot exclude OBOC libraries as an approach in the quest of finding new cyclic peptide binding partners.
63

Conformational Analysis of Designed and Natural Peptides : Studies of Aromatic/Aromatic and Aromatic/Proline Interactions by NMR

Sonti, Rajesh January 2013 (has links) (PDF)
This thesis describes NMR studies which probe weak interactions between amino acid side chains in folded peptide structures. Aromatic/aromatic interactions between facing phenylalanine residues have been probed in antiparallel β-sheets, while aromatic/proline interactions have been examined using cyclic peptide disulfides that occur in the venom of marine cone snails. Novel intramolecular hydrogen bonded structures in hybrid peptides containing backbone homologated residues, specifically γ-amino acids, are also described. Chapter 1 provides a brief background to the principles involved in the design of antiparallel β-sheet structures and an introduction to previous studies on aromatic/aromatic and aromatic/proline interactions in influencing peptide conformations. A summary of the NMR methods used is also presented. Chapter 2 discusses the structural characterisation of a designed 14 residue, three stranded β-sheet peptide, Boc-LFVDP-PLFVADP-PLFV-OMe (LFV14). The results described in this Chapter support the presence of multiple conformational states about the χ1 (Cα-Cβ) torsional degree of freedom for the interacting aromatic pairs in solution. Chapter 3 presents the structural characterisation of a designed 19 residue three stranded hybrid β-sheet peptide, Boc-LVβFVDPGLβFVVLDPGLVLβFVV-OMe (BBH19). β-amino acid residues (β-phenylalanine, βPhe) were incorporated at facing positions on antiparallel β-sheets. The BBH19 structure provides an example of interaction between the N and C-terminal strands in a three stranded structure with an α/β hybrid backbone. Chapter 4 focuses on studies of the conformations of the contryphan In936 (GCVDLYPWC*) from Conus inscriptus and the related peptide Lo959 (GCPDWDPWC*) from Conus loroissi. Both peptides possess a macrocyclic 23 membered ring, with multiple accessible conformational states. Chapter 5 describes conformational analysis of a novel 20 membered cyclic peptide disulfide, CIWPWC (Vi804), from Conus virgo. NMR structures were calculated for Vi804 and an analog peptide, CIDWPWC, DW3-Vi804. Chapter 6 explores the solution conformation of hybrid sequences containing α and γ residues. Oligopeptides of the type (αγ)n and (αγγ)n have been studied in solution by NMR methods. Chapter 7 provides a summary of the results described in this thesis and highlights the major conclusions.
64

Effects of carbon nanotubes on barrier epithelial cells via effects on lipid bilayers

Lewis, Shanta January 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Carbon nanotubes (CNTs) are one of the most common nanoparticles (NP) found in workplace air. Therefore, there is a strong chance that these NP will enter the human body. They have similar physical properties to asbestos, a known toxic material, yet there is limited evidence showing that CNTs may be hazardous to human barrier epithelia. In previous studies done in our laboratory, the effects of CNTs on the barrier function in the human airway epithelial cell line (Calu-3) were measured. Measurements were done using electrophysiology, a technique which measures both transepithelial electrical resistance (TEER), a measure of monolayer integrity, and short circuit current (SCC) which is a measure of vectorial ion transport across the cell monolayer. The research findings showed that select physiologically relevant concentrations of long single-wall (SW) and multi-wall (MW) CNTs significantly decreased the stimulated SCC of the Calu-3 cells compared to untreated cultures. Calu-3 cells showed decreases in TEER when incubated for 48 hours (h) with concentrations of MWCNT ranging from 4µg/cm2 to 0.4ng/cm2 and SWCNT ranging from 4µg/cm2 to 0.04ng/cm2. The impaired cellular function, despite sustained cell viability, led us to investigate the mechanism by which the CNTs were affecting the cell membrane. We investigated the interaction of short MWCNTs with model lipid membranes using an ion channel amplifier, Planar Bilayer Workstation. Membranes were synthesized using neutral diphytanoylphosphatidylcholine (DPhPC) and negatively charged diphytanoylphosphatidylserine (DPhPS) lipids. Gramicidin A (GA), an ion channel reporter protein, was used to measure changes in ion channel conductance due to CNT exposures. Synthetic membranes exposed to CNTs allowed bursts of currents to cross the membrane when they were added to the membrane buffer system. When added to the membrane in the presence of GA, they distorted channel formation and reduced membrane stability.

Page generated in 0.0669 seconds