Spelling suggestions: "subject:"cybrid 5peptides"" "subject:"cybrid aapeptides""
1 |
Designed Synthetic Peptides : Models For Studies Of Conformational Transitions And Aromatic InteractionsRajagopal, A 04 1900 (has links) (PDF)
This thesis set out to explore the conformational properties of short designed peptide sequences, in which transitions between structural states may be anticipated. The use of conformationally constrained residues like α-aminoisobutyric acid (Aib) and D-proline (DPro) permits the design of model sequences for structural studies. The principle of imposing conformational constraints by multiple substitutions at backbone atoms in aminoacid residues may also be extended to the higher homologs of α-amino acids,
namely β and residues. The experimental results presented in this thesis also examine the potential of using cross-strand interactions between aromatic residues as a probe of structure in designed peptide β-hairpins.
Chapter 1 provides a very brief introduction to the necessary background on which the experimental studies in this thesis are based.
Chapter 2 describes studies aimed at establishing chain length effects on helix-hairpin conformational distributions in short synthetic sequences, containing centrally positioned Aib-DAla and Aib-Aib segments.The Aib-DAla dipeptide segment has a tendency to form both type-I'/III' and type-I/III β-turns. The occurrence of prime turns facilitates the formation of β-hairpin conformations, while type-I/III turns can nucleate helix formation. The octapeptide Boc-Leu-Phe-Val-Aib-DAla-Leu-Phe-Val-OMe (1) has been previously shown to form a β-hairpin in the crystalline state and in solution. The effects of sequence truncation have been examined using the model peptides Boc-Phe-Val-Aib-Xxx-Leu-Phe-NHMe (2, 6), Boc-Val-Aib-Xxx-Leu-NHMe (3, 7) and Boc-Aib-Xxx-NHMe (4, 8), where Xxx = DAla, Aib. For peptides with central Aib-Aib segments, Boc-Phe-Val-Aib-Aib-Leu-Phe-NHMe (6), Boc-Val-Aib-Aib-Leu-NHMe (7) and Boc-Aib-Aib-NHMe (8) local helical conformations have been established by NMR studies in both hydrogen bonding (CD3OH) and non-hydrogen bonding (CDCl3) solvents. In contrast, the corresponding hexapeptide Boc-Phe-Val-Aib-DAla-Leu-Phe-Val-NHMe (2) favors helical conformations in CDCl3 and β-hairpin conformations in CD3OH. β-Turn conformations (type-I /III) stabilized by intramolecular 4 1 hydrogen bonds are observed for the peptide Boc-Aib-DAla-NHMe (4) and Boc-Aib-Aib-NHMe (8) in crystals. The tetrapeptide Boc-Val-Aib-Aib-Leu-NHMe (7) adopts an incipient 310-helical conformation stabilized by three 4 1 hydrogen bonds. The peptide Boc-Val-Aib-DAla-
Leu-NHMe (3) adopts a novel -turn conformation, stabilized by three intramolecular hydrogen bonds (two 4 1 and one 5 1). The Aib-DAla segment adopts a type-I' β-turn conformation. The observation of the NOE Val(1) NH HNCH3 (5), in CD3OH, suggests that the solid state conformation of peptide 3 is maintained in methanol solutions.
Peptide hairpins provide an ideal scaffold for exploring cross-strand interactions between residues on facing antiparallel strands. Chapter 3 reports studies directed towards probing, aromatic interactions between facing Phe residues, positioned at the non-hydrogen bonding positions in designed octapeptide β-hairpins. The studies described in this Chapter employ ring current shifted aromatic proton resonances as a means of probing aromatic ring orientations. Crystal structures of eight peptide -hairpins with the sequence Boc-Leu-Phe-Val-Xxx-Yyy-Leu-Phe-Val-OMe revealed that the Phe(2) and Phe(7) aromatic rings are in close spatial proximity, with a centroid-centroid distance (Rcen) of 4.4Å to 5.4Å between the two phenyl rings. Proton NMR spectra in chloroform and methanol solutions reveal a significant upfield shift of the Phe(7) C , ′ H2 protons
(6.65 ppm to 7.04 ppm). Specific assignments of the aromatic protons have been carried out in the peptide Boc-Leu-Phe-Val-DPro-LPro-Leu-Phe-Val-OMe (6). The anticipated ring current shifts have been estimated from the aromatic ring geometries observed in crystals for all eight peptides. Only one of the C , ′ H proton lies in the shielding zone, with rapid ring flipping, resulting in averaging between the two extreme chemical shifts. An approximate estimate of the population of conformations which resemble crystal state orientations may be obtained. Key nuclear Overhauser effects (NOEs) between facing Phe sidechains provide support for close similarity between the solid state and solution conformations. Temperature dependence of aromatic ring proton chemical shifts and line widths for peptide 6 (Boc-Leu-Phe-Val-DPro-LPro-Leu-Phe-Val-OMe) and the control peptide Boc-Leu-Val-Val-DPro-Gly-Leu-Phe-Val-OMe establish an enhanced barrier to ring flipping, when the two Phe rings are in proximity. Modeling studies suggest that small, conformational adjustments about the C -C ( 1), and C -C ( 2) bonds of the Phe residues may be required in order to permit unhindered, uncorrelated flipping of both the Phe rings. The maintenance of specific aromatic ring orientations in organic solvents provides evidence for significant stabilizing interactions.
Earlier studies from this laboratory established that a centrally positioned DPro-LPro-DAla segment could induce hairpin formation in nonapeptide sequences, facilitated by a three residue loop segment. The DAla residue at position 6 in the nonapeptide Boc-Leu-Phe-Val-DPro-LPro-DAla-Leu-Phe-Val-OMe has been shown to adopt a left handed helical (αL) conformation. The studies described in Chapter 4, examine the effects of aminoacid replacements at positions 5 and 6. NMR studies on eight nonapeptides, with the general sequence Boc-Leu-Phe-Val-DPro-Xxx-Yyy-Leu-Phe-Val-OMe are described. In the case of peptides with a central DPro-LPro-Yyy sequence, two kinds of hairpin conformations are formed in solution. These are; i) β-hairpin structures with a central three residue loop, resulting in registered antiparallel tripeptide strands, and ii) a slipped hairpin structure, nucleated by a central DPro-LPro type-II β-turn, with residue 6 being incorporated into the C-terminal strand. The three residue loop β-hairpins are favored for DAla(6) and Aib(6), while the LAla(6) peptide favors a “slipped” hairpin structure. Replacement of the Pro(5) residue by LAla results in a reduced population of three residue hairpins in the nonapeptide with the DPro-LAla-DAla segment. Replacement of Pro(5) by Aib, abolished hairpin formation. Aromatic proton chemical shifts provide a convenient diagnostic for the presence of three residue loop hairpin conformations in these nonapeptides.
A great deal of current interest has focused on the conformations of peptides incorporating β and γ aminoacid residues. Earlier studies from this laboratory have focused on the conformational properties of the β,β -disubstituted γ residue gabapentin (1-aminomethylcyclohexane acetic acid). Subsequent work with the related β aminoacid β3,3Ac6c (1-aminocyclohexaneacetic acid) revealed that intramolecularly hydrogen bonded conformations are infrequently observed in short peptides. The studies described in Chapter 5, examine the conformational properties for model peptides containing the isomeric β-aminoacid, β2,2Ac6c (1-aminomethylcyclohexane-1-carboxylic acid). The effect of gem dialkyl substituents on the backbone conformations of amino acid residues in peptides, has been investigated using four model peptides, Boc-Xxx-2,2Ac6c-NHMe [Xxx = Leu (1), Phe(2)] and Boc-Xxx- 3,3Ac6c-NHMe [Xxx = Leu (3), Phe(4)]. Tetrasubstituted carbon atoms restrict the ranges of stereochemically allowed
a C11 helical turn, which is a backbone expanded analog of the type III -turn in sequences. The crystal structure of the peptide Boc-Phe- 3,3Ac6c-NHMe (4) establishes a the asymmetric unit adopt backbone torsion angles of opposite signs. In one of the molecules, the Phe residue adopts an unfavourable backbone conformation, with the energetic penalty being offset by favourable aromatic interactions between proximal molecules in the crystal. NMR studies provide evidence for the maintenance of folded structures in solution, in these hybrid sequences. The result presented in this thesis suggests that it should be possible to construct designed synthetic peptides, which can undergo transitions between two distinct and energetically favourable conformational states. The ability to design peptide sequences that can undergo switching between helical and β-hairpin states, or between hairpin structures with variations in connecting loop length may prove valuable in providing further insights into the factors influencing conformational dynamics.
|
2 |
Conformational Analysis Of Designed Alpha-Omega Hybrid PeptidesRoy, Rituparna Sinha 03 1900 (has links) (PDF)
The insertion of ω- amino acid residues as guests into host α-peptide sequences permits expansion of the range of polypeptide secondary structures. The term ω- amino acid is used to refer to the entire family of residues generated by homologation of the backbone of α - amino acid residues. This explores the consequences of insertion of substituted β-residues (β3) , unsubstituted β-residues , unsubstituted γ-residues (gamma aminobutyric acid) and unsubstituted δ-residues (delta aminovaleric acid) into host α -peptide sequences. Chapter 1 provides an introduction to the conformational properties of β-peptides and reviews current literature on the structural features of peptides containing ω-amino acid residues. The available crystallographic information is summarized. The conformational properties of β- residues may be described by three degrees of torsional freedom : φ (N – Cβ) , θ (Cβ -Cα) and ψ (Cα-CO). Similarly, the conformational properties of γ -residues is based on four torsional parameters ( φ , θ1 , θ2, ψ) and the conformational properties of δ - residues is based on five degrees of freedom ( φ , θ1 , θ2, θ3,ψ). The rational use of β -residues in peptide design requires an understanding of the nature of local conformations, which are readily accessible. The conformational space for β -residues can be represented in a three dimensional plot. The observed distribution of φ , θ and ψ values for β -residues in peptide crystal structures presented in this section permits a correlation
-
between the torsion angle θ and the secondary structure context. The gauche (g+ and g ) conformations induce helical folding and the trans conformation is generally observed in the strands of a hairpin. The most striking feature of hybrid sequences is the observation of novel hydrogen bonded rings in peptide structures.
Chapter 2 describes the effects of insertion of β-residues into specific positions in the strand segments of designed peptide hairpins. Insertion of β -residues into the strands of a hairpin changes the orientation of peptide bonds, resulting in a “polar sheet” arrangement. The conformational analysis of three designed peptide hairpins composed of α/β - hybrid segments are described: Boc-Leu-βPhe-Val-DPro-Gly- Leu-βPhe-Val-OMe (BBH8) , Boc-βLeu- Phe-βVal-DPro-Gly-βLeu-Phe-βVal-OMe (BAB8) and CF3COO-H3N+-Leu-Val-Val-βPhe-DPro-Gly-βPhe-Leu-Val-Val-OMe (BHFF10). All the peptides have been characterized by 500 MHz 1H-NMR spectroscopy and several crucial long range NOEs confirm a predominant population of β-hairpin conformations in CD3OH. X-ray diffraction studies on single crystals of peptide BBH8 reveal a β-hairpin conformation, stabilized by three cross-strand hydrogen bonds and a Type II′β-turn at the DPro-Gly turn segment. Designed β-hairpin peptide scaffolds may be used to probe cross-strand sidechain interactions in β-sheet structures. A previously reported peptide β-hairpin, Boc-Leu-Phe-Val-DPro-Gly-Leu-Phe-Val-OMe exhibited an anomalous far UV CD spectrum, which was interpreted in terms of interactions between facing aromatic chromophores, Phe 2 and Phe 7 (Zhao, C.; Polavarapu, P.L.; Das,C. and Balaram, P. J. Am. Chem. Soc., 2000, 122, 8228-8231). In BBH8 and BHFF10 the two cross-strand βPhe residues are at non-hydrogen bonding positions, with the benzyl sidechains pointing on opposite faces of the β- sheet. BBH8 yields a “hairpin –like” CD spectrum, with a minimum at 224 nm. The CD spectrum of BAB8 reveals a negative band at 234 nm and a positive band at 221 nm suggestive of an exciton split doublet. BHFF10 yields a “hairpine-like” CD spectrum, with a negative band at 220 nm.
Chapter 3 describes the synthesis and conformational characterization of three hybrid decapeptides : Boc-Leu-Val-βGly-Val-DPro-Gly- Leu-βGly -Val-Val-OMe (BHB10), Boc-Leu-Val-γAbu-Val-DPro-Gly- Leu-γAbu -Val-Val-OMe (BHC10) and Boc- Leu-Val-δAva-Val-DPro-Gly- Leu-δAva -Val-Val-OMe (BHD10). These peptides were designed to systematically investigate the effect of insertion of additional methylene groups into the strands of a hairpin. The incorporation of additional carbon atoms changes the local polarity of the strands. 500 MHz NMR studies establish that BHB10 and BHD10 adopt predominantly β- hairpin conformations in methanol, with interstrand registry established by observation of long range NOEs. The observation of both DPro 4 (CαH) ↔ Gly 5 (NH) and Gly 5 (NH) ↔ Leu 6 (NH) NOEs provides evidence for a Type II ′β - turn for all the hairpins. In BHC10, no long range NOEs were observed. However, X-ray diffraction studies in single crystals reveal a β- hairpin conformation, nucleated by a DPro-Gly Type II′β-turn.
Chapter 4 describes an attempt to incorporate one or two ω amino acid residues in the turn region of a potential hairpin, in order to assess the effect of expansion of the nucleating turn. The DPro-LPro segment has been shown to stabilize β-hairpin conformations in both cyclic (Shankaramma,S.C.; Moehle, K. ; James, S.; Vrijbloed, J.W.; Obrecht,D and Robinson, J.A. Chem Commun. 2003,1842-1843) and acyclic sequences ( Raj Kishore Rai ; S.Raghothama and P. Balaram , unpublished results) . In the present study the following turn segments have been considered: βDPro -αLPro , βLPro -αLPro and βLPro -αDPro. The synthesis and conformational analysis of three octapeptide sequences -Boc-Leu-Phe-Val-βDPro-αLPro-Leu-Phe-Val-OMe (βDPαLP8), Boc-Leu-Phe-Val-βLPro-αLPro-Leu-Phe-Val-OMe (βLPαLP8)and Boc-Leu-Phe-Val-βLPro-αDPro-Leu-Phe-Val-OMe (βLPαDP8) are described. In the βDPro-αLPro peptide, NMR evidence clearly supports a β-hairpin conformation, with a nucleating hybrid βα turn stabilized by a C11 (4 →1) hydrogen bond. In the other two octapeptides, no evidence for folded structures was obtained. These results suggest that nucleating turn formation is facilitated only in the heterochiral βD-αL case. Further expansion of the turn segment in potential hairpins has been investigated by inserting two contiguous β-residues into the center of a host α-peptide sequence. The conformational studies on two synthetic hexapeptides, Boc-Leu-Phe-βDPhe-βLPro-Phe-Leu-OMe (βDFβLP6) and Boc-Leu-Phe-βLPhe-βLPro-Phe-Leu-OMe (βLFβLP6) suggest that the βDPhe-βLPro segment is capable of forming a C12 turn in methanol. Two octapeptide sequences, Boc-Leu-Val-Leu-βDPhe-βLPro-Leu-Phe-Val-OMe (βDFβLP8N) and Boc-Leu-Val-Val-βDPhe-βLPro-Leu-Val-Val-OMe (βDFβLP8V) have also been investigated to probe the possible formation of hairpin structures. In these cases, spectroscopic analysis is hampered by the presence of multiple conformations, because of the tendency of the βDPhe-βLPro bond to exist in both cis and trans conformations.
NMR studies on the conformational properties of a hexapeptide Boc-Leu-Val-βDPro-βLPro-Leu-Phe-OMe (βDPβLP6) in CDCl3 reveal that in the major conformer the Val 2(NH) ↔ Leu 5 (NH) NOE is observed, suggesting the presence of a 12-membered hydrogen bonded turn.
A ββ - segment can give rise to two types of hydrogen bonded rings , 10 – membered (C10) and 12- membered (C12). In an attempt to generate C10 turns, an N-methylamino acid has been inserted next to a ββ - segment, preventing the formation of the 12 – membered turn. In such a situation formation of a 10-membered turn, with reverse hydrogen bond directionality, may be facilitated. The conformational properties of Boc-Leu-Val-βDPhe-βLPro-(N-Me) Leu- Phe-OMe (βDFβLPNMeL6) has been studied by 500 MHz NMR spectroscopy. The data suggests the formation of a C11 turn at the βLPro- (N-Me) Leu segment in CDCl3-DMSO mixtures, instead of formation of a C10 turn at the βDPhe -βLPro segment. Studies on the peptide Boc-Leu-Phe-Val-βLPro-(N-Me) Leu-Leu-Phe-Val-OMe (βLPNMeL8) also suggest the absence of turn formation and folded structures.
In hybrid sequences, an important question to be addressed is whether ω amino acids can be accommodated into helical structures. Two contiguous β- residues have been inserted into a helical sequence. The conformational properties of a 11- residue peptide, Boc-Val-Ala-Phe-Aib-βVal-βPhe-Aib-Val-Ala-Phe-Aib-OMe (ABA11) are described in Chapter 5. This sequence was based on the parent α- peptide Boc-Val-Ala-Phe-Aib-Val-Ala-Phe-Aib-Val-Ala-Phe-Aib-OMe, which adopted a complete helical conformation in crystals (Aravinda, S.; Shamala, N.; Das, C .; Sriranjini, A.; Karle, I.L. and Balaram, P. J. Am. Chem. Soc. 2003, 125, 5308-5315). 500 MHz 1H-NMR studies establish a continuous helix over the entire length of the peptide in CDCl3 solution , as evidenced by diagnostic nuclear Overhauser effects. The molecular conformation in crystals reveals a continuous helical fold, stabilized by seven intramolecular hydrogen bonds. The characterization of two synthetic octapeptides Boc-Val-Ala-βPhe-Aib-Val-Ala-βPhe-Aib-OMe (VAβFU8) (βPhe residues have been incorporated at (i /i+4 positions) and Boc-Val-Ala-βPhe-Aib-βPhe-Ala-Val-Aib-OMe (βFUβF8) (βPhe residues have been incorporated at (i /i+2 positions) is also presented. NMR data suggests the retention of helical conformation in both the peptides. In order to delineate the conformations of hybrid peptides with three contiguous β-residues, two peptides have been synthesized Boc-Phe-Aib-βGly-βLeu-βPhe-Aib-Val-Ala-Phe-Aib-OMe (ABA10) and Boc-Val-Ala-Phe-Aib-βGly-βLeu-βPhe-Aib-Val-Ala-Phe-Aib-OMe (ABA12). NMR studies in chloroform support continuous helical conformation in the decapeptide.
|
3 |
X-Ray Crystallographic Studies Of Designed Peptides : Characterization Of Novel Secondary Structures Of Peptides Containing Conformationally Constrained α-, β- And γ-Amino Acids And Polymorphic Peptide HelicesVasudev, Prema G 01 1900 (has links)
Structural studies of peptides are of great importance in developing novel and effective biomaterials ranging from drugs and vaccines to nano materials with industrial applications. In addition, they provide model systems to study and mimic the protein conformations. The ability to generate folded intramolecularly hydrogen bonded structures in short peptides is essential for peptide design strategies, which rely on the use of folding nuclei in the construction of secondary structure modules like helices and β-hairpins. In these approaches, conformational choices at selected positions are biased, using local stereochemical constraints, that limit the range of accessible backbone torsion angles. X-ray crystallographic studies of designed peptides provide definitive proof of the success of a design strategy, and provide essential structural information that can be utilized in the future design of biologically and structurally important polypeptides. Recent trends in peptide research focus on the incorporation of β-, γ- and higher homologs of the α-amino acid residues in designed peptides as they confer more proteolytic stability to the polypeptides. X-ray crystallographic studies of such modified peptides containing non-protein residues are essential, since information on the geometric and stereochemical properties of modified amino acids can only be gathered from the systematic structural studies of synthetic peptides incorporating them.
This thesis reports a systematic study of the structures and conformations of amino acid derivatives and designed peptides containing stereochemically constrained α-, β- and γ-amino acid residues and the structural studies of polymorphic peptide helices. The structures described in thesis contain the Cα,α-dialkyalted α-residues α-aminoisobutyric acid (Aib) and 1-aminocyclohexane-1-carboxylic acid (Ac6c), the β-amino acid residue 1-aminocyclohexane acetic acid (β3,3Ac6c) and the γ-amino acid residue 1-aminomethylcyclohexaneacetic acid (gabapentin, Gpn).
The crystal structure determination of peptides incorporating conformationally constrained α-, β- and γ- amino acid residues permitted the characterization of new types of hydrogen bonded turns and polymorphs. The studies enabled the precise determination of conformational and geometric parameters of two ω-amino acid residues, gabapentin and β 3,3Ac6c and provided detailed information about the conformational excursions possible for peptide molecules.
This thesis is divided into 10 chapters.
Chapter 1 gives a general introduction to the stereochemistry of the polypeptide chain, description of backbone torsion angles of α- and ω- amino acid residues and the major secondary structures of α-peptides, β-peptides, γ-peptides and hybrid peptides. A brief introduction to polymorphism and weak interactions, in particular aromatic interactions, is also provided, followed by a discussion on X-ray diffraction and solution to the phase
problem.
Chapter 2 describes the crystal structures of gabapentin zwitterion and its eight derivatives (Ananda, Aravinda, Vasudev et al., 2003). The crystal structure of the gabapentin zwitterions determined in this study is identical to that previously reported (Ibers, J. A. Acta Crystallogr. 2001, C57, 641-643). Eight of the nine achiral compounds crystallized in centrosymmetric space groups P21/c, C2/c or Pbca, while one derivative (Tos-Gpn-OH) crystallized in non-centrosymmetric space group Pna21 with four independent molecules in the asymmetric unit.The structural studies presented in this chapter reveal that the geminal substituents on the Cβ atom limits the values of dihedral angles θ1 and θ2 to ±60°, resulting in folded backbone conformations in all the examples. Intramolecular hydrogen bonds with 7-atoms in the hydrogen bond turn (C7) are observed in three derivatives, gabapentin hydrochloride (GPNCL), Boc-Gpn-OH (BGPNH) and Piv-Gpn-OH (PIVGPN), while a 9-atom hydrogen bonded turn (C9) is observed in Ac-Gpn-OH (ACGPH). Unique structural features, such as an unusual anti conformation of the COOH group (in ACGPH) and positional disorder of the cyclohexane ring (in BGPNN), indicating the co-existence of both the interconvertible chair
conformations, are revealed by the crystal structure analyses.
Chapter 3 describes the structural characterization of novel hydrogen bonded conformations of homo oligomers of Gpn. The crystal structures of three peptides, Boc-Gpn-Gpn-NHMe (GPN2), Boc-Gpn-Gpn-Leu-OMe (GPN2L) and Boc-Gpn-Gpn-Gpn-Gpn-NHMe (GPN4) provide the first crystallographic characterization of two new families of polypeptide structures, the C9 helices and C9 ribbons (Vasudev et al., 2005, 2007), in which the molecular conformations are stabilized by contiguous C9 turns formed by the hydrogen bonding between the CO group of residue (i) and the NH group of residue (i+2). The C9 hydrogen bond is characterized by a specific combination of the four torsion angles for the Gpn backbone, with the torsion angles θ1 and θ2 adopting g+/g+ or g /g- conformations. The structural analysis also permits precise determination of hydrogen bond geometry for the C9 structures, which is highly linear in contrast to the analogous γ-turn hydrogen bonds in α-peptides. A comparison of the backbone conformations in the three peptides reveals two classes of C9 hydrogen bonded secondary structures, namely C9 helices and C9 ribbons. The packing arrangement in these γ-peptides follows the same patterns as the helix packing in crystals of α-peptides.
Chapter 4 describes ten crystal structures of short hybrid peptides containing the Gpn
residue (Vasudev et al., 2007). In addition to the C7 and C9 hydrogen bonded turns which are defined by the backbone conformations at the Gpn residue, hybrid turns defined by a combination of backbone conformations at the α and γ-residues or at the β and γ-residues have been determined. Peptides Boc-Ac6c-Gpn-OH (ACGPH), Piv-Pro-Gpn-Val-OMe
(PPGPV) and Boc-Val-Pro-Gpn-OH (VPGPH) reveal molecular conformation stabilized by intramolecular C9 hydrogen bonds, while Boc-Ac6c-Gpn-OMe (ACGPO) and Boc-Gpn-Aib-OH (GPUH) are stabilized by a C7 hydrogen bonded turn at the Gpn residue. An αγ hybrid turn with 12 atoms in the intramolecular hydrogen bonded rings (C12 turns) has been observed in the tripeptide Boc-Ac6c-Gpn-Ac6c-OMe (ACGP3), while βγ hybrid turns with 13 atoms in the hydrogen bonded ring (C13 turns) have been characterized in the tripeptides Boc-βLeu-Gpn-Val-OMe (BLGPV) and Boc- βPhe-Gpn-Phe-OMe (BFGPF). The two βγ C13 turns belong to two different categories and are characterized by different sets of backbone torsion angles for the β and γ residues. A γα C10 hydrogen bond, which is formed in the N→C direction (NHi ••• COi+2), as opposed to the regular hydrogen bonded helices of α-peptides, has also been observed in BFGPF. The Chapter provides a comparison of the backbone torsion angles of the Gpn residue in various hydrogen bonded turns and a brief comparison of the observed hydrogen bonded turns with those of the α-peptides.
Chapter 5 describes the crystal structures of three αγ hybrid peptides which show C12/C10 mixed hydrogen bond patterns (Vasudev et al., 2007, 2008a; Chatterjee, Vasudev et al.,2008a). The insertion of gabapentin in the predominantly α-amino acid sequences in Boc-Ala-Aib-Gpn-Aib-Ala-OMe (AUGP5) and Boc-Leu-Gpn-Aib-Leu-Gpn-Aib-OMe results in the observation of helices stabilized by αα C10 (310-turn) and αγ C12 turns. The tetrapeptide Boc-Leu-Gpn-Leu-Aib-OMe reveals a novel conformation, stabilized by C12 (αγ) and C10 (γα) hydrogen bonds of opposite hydrogen bond directionalities. The conformations observed in crystals have been extended to generate C12 helix and C12/C10 helix with alternating hydrogen bond polarities in ( αγ)n sequences. The structure determination of three crystals, providing five molecular conformations, presented in this chapter provides the first crystallographic characterization of two types of helices predicted for the regular αγ hybrid peptides from theoretical calculations. The crystal structure of Boc-Ala-Aib-Gpn-Aib-Ala-OMe also provides an example for the co-existence of left-handed and right-handed helix in the asymmetric unit.
Chapter 6 describes the structural studies of αγ hybrid peptides containing Aib and Gpn residues, and is divided into two parts. The first part presents the crystal structure analysis of peptides of sequence length 2 to 4, with alternating Aib and Gpn residues, and illustrates the conformational variability in αγ hybrid sequences as evidenced by the observation of conformational polymorphs (Chatterjee, Vasudev et al., 2008b; Vasudev et al., 2007; Ananda, Vasudev et al., 2005). The peptide Boc-Gpn-Aib-NHMe (GUN), Boc-Aib-Gpn-Aib-OMe (UGU), Boc-Gpn-Aib-Gpn-Aib-OMe (GU4O), Boc-Aib-Gpn-Aib-Gpn-OMe (UG4O) and Boc-Aib-Gpn-Aib-Gpn-NHMe (UG4N), all of which are potential candidates for exhibiting αγ C12 hydrogen bonds, reveal molecular conformations stabilized by diverse hydrogen bonded turns such as C7, C9, C12 and C17 in crystals. The conformational heterogeneity in this class of hybrid peptides is further evidenced by the observation of three polymorphs in the monoclinic space group P21/c for the tetrapeptide Boc-Aib-Gpn-Aib-Gpn-NHMe (UG4N), providing four independent peptide molecules adopting two distinct backbone conformations. In one polymorph, C12 helices terminated with an unusual three residue ( γαγ) C17 turn is observed, while the unfolding of helical conformation by solvent insertion into the backbone is observed in the other two polymorphs. The studies indicate the possible utility of Gpn residue in stabilizing locally folded conformations in the folding pathway, thus permitting their crystallographic characterization in multiple crystal forms. A discussion of the structural and conformational features of Gpn residues determined from all the crystal structures is presented in the Chapter, along with a φ-ψ plot for the Gpn residue.
Part 2 of Chapter 6 describes the crystal structures of two octapeptides, Boc-Gpn-Aib-Gpn-Aib-Gpn-Aib-Gpn-Aib-OMe (GU8) and Boc-Leu-Phe-Val-Aib-Gpn-Leu-Phe-Val-OMe (LFVUG8), featuring C12 turns at the Aib-Gpn segments (Chatterjee, Vasudev et al., 2009). GU8 folds into a C12 helix flanked by C9 hydrogen bonds at both the termini, while LFVUG8 adopts β-hairpin conformation with a chain-reversing C12 turn at the central Aib-Gpn segment. A remarkable feature of the Aib-Gpn turn in the β-hairpin structure is the anti conformation about the Cβ-Cα (θ2) bond, which is the only example of a Gpn residue not adopting gauche conformation for both θ1 and θ2. The crystal structures of the two peptides, mimicking the two major secondary structural elements of α-peptides in hybrid polypeptides, permits a comparative study of the mode of molecular packing in crystals of α-peptides and hybrid peptides. The chapter also discusses theoretical calculations on αγ hybrid sequences, which reveal new types of C12 hydrogen bonded turns.
Chapter 7 describes the crystal structures of conformationally biased tert-butyl derivatives of Gpn. The crystallographic characterization of the E (trans) and Z (cis) isomers of the residue,three protected derivatives and a tripeptide provides examples of C7 and C9 hydrogen bonded conformations, suggesting that the C7 and C9 hydrogen bonds can be formed by Gpn residues with both the chair conformations of the cyclohexane ring.
Chapter 8 describes the systematic structural studies of the derivatives and peptides of the stereochemically constrained β- amino acid residue, β3,3Ac6c (Vasudev et al., 2008c). The backbone torsion angles φ and θ adopt gauche conformation in majority of the examples, owing to the presence of a cyclohexane ring on the Cβ atom. In contrast to Gpn, β3,3Ac6c does not show strong preference for adopting intramolecularly hydrogen bonded conformations. Of the 16 crystal structures determined, intramolecular hydrogen bonds involving the β-residue are observed only in 4 cases. The amino acid zwitterion (BAC6C), the hydrochloride (BACHCL) and the dipeptide Boc-β3,3Ac6c-β3,3Ac6c-NHMe (BAC62N) form N-H•••O hydrogen bonds with 6-atoms in the hydrogen bond ring (C6 turns). An αβ hybrid C11 hydrogen bonded turn is characterized in the dipeptide Piv-Pro-β3,3Ac6c-NHMe, which is distinctly different from the C11 hydrogen bonds observed in αβ hybrid peptide helices. Several unique structural features such as a dynamic disorder of the hydrogen atom of the carboxylic acid group (in BBAC) and cis geometry of the urethane bond (in BBAC, BAC62N and BPBAC) have been observed in this study. A comparison of the backbone conformations of β3,3Ac6c with other β- amino acid residues is also provided.
Chapter 9 describes the crystallographic characterization of a new polymorph of gabapentin monohydrate and crystal structures of the zwitterions of E and Z isomers of tert-butylgabapentin and its hydrochloride and hydrobromide (Vasudev et al., 2009). A comparison of the crystal structures of the monoclinic form (Ibers, J. A. Acta Crystallogr. 2001, C57, 641-643) of gabapentin monohydrate and the newly characterized orthorhombic form reveals identical molecular conformations and intermolecular hydrogen bond patterns in both the polymorphs. The two polymorphs show differences in the orientation of molecules constituting a layer of hydrophobic interactions between the cyclohexyl side chains. A comparison of the packing arrangements of the zwitterionic amino acid molecules in the crystal structures of gabapentin monohydrate, the tert-butyl derivatives and other co-crystals of gabapentin that had been characterized so far, is provided which would facilitate prediction of new polymorphs of the widely used drug molecule, Gpn.
Chapter 10 describes the crystallization of α-peptide helices in multiple crystal forms (Vasudev et al., 2008b). Crystal structures of two peptides, Boc-Leu-Aib-Phe-Phe-Leu-Aib-Ala-Ala-Leu-Aib-OMe (LFF), Boc-Leu-Aib-Phe-Ala-Leu-Ala-Leu-Aib-OMe (D1) in two crystal forms and the crystal structure of a related sequence, Boc-Leu-Aib-Phe-Ala-Phe-Aib-Leu-Ala-Leu-Aib-OMe (D10) permit an analysis of the molecular conformation and packing patterns of peptide helices in crystals. The two polymorphs of LFF, crystallized in the space groups P21 and P22121, reveal very similar molecular conformation (α/310-helix) in both the polymorphic crystals; the two forms differ significantly in the pattern of solvation. The crystal structure determination of a monoclinic (P21) and an orthorhombic polymorph (P21212) of D1 provides five different peptide conformations, four of which are α-helical and one is a mixed 310/α-helix. The crystal structure determination of the three peptides provide an opportunity to compare the nature and role of aromatic interactions in stabilizing molecular conformation and packing and its significance in the observation of polymorphism. An analysis of the Cambridge Structural Database and a model for nucleation of crystals in
hydrophobic peptide helices are also discussed.
|
4 |
Conformational Analysis of Designed and Natural Peptides : Studies of Aromatic/Aromatic and Aromatic/Proline Interactions by NMRSonti, Rajesh January 2013 (has links) (PDF)
This thesis describes NMR studies which probe weak interactions between amino acid side chains in folded peptide structures. Aromatic/aromatic interactions between facing phenylalanine residues have been probed in antiparallel β-sheets, while aromatic/proline interactions have been examined using cyclic peptide disulfides that occur in the venom of marine cone snails. Novel intramolecular hydrogen bonded structures in hybrid peptides containing backbone homologated residues, specifically γ-amino acids, are also described.
Chapter 1 provides a brief background to the principles involved in the design of antiparallel β-sheet structures and an introduction to previous studies on aromatic/aromatic and aromatic/proline interactions in influencing peptide conformations. A summary of the NMR methods used is also presented. Chapter 2 discusses the structural characterisation of a designed 14 residue, three stranded β-sheet peptide, Boc-LFVDP-PLFVADP-PLFV-OMe (LFV14). The results described in this Chapter support the presence of multiple conformational states about the χ1 (Cα-Cβ) torsional degree of freedom for the interacting aromatic pairs in solution. Chapter 3 presents the structural characterisation of a designed 19 residue three stranded hybrid β-sheet peptide, Boc-LVβFVDPGLβFVVLDPGLVLβFVV-OMe (BBH19). β-amino acid residues (β-phenylalanine, βPhe) were incorporated at facing positions on antiparallel β-sheets. The BBH19 structure provides an example of interaction between the N and C-terminal strands in a three stranded structure with an α/β hybrid backbone. Chapter 4 focuses on studies of the conformations of the contryphan In936 (GCVDLYPWC*) from Conus inscriptus and the related peptide Lo959 (GCPDWDPWC*) from Conus loroissi. Both peptides possess a macrocyclic 23 membered ring, with multiple accessible conformational states. Chapter 5 describes conformational analysis of a novel 20 membered cyclic peptide disulfide, CIWPWC (Vi804), from Conus virgo. NMR structures were calculated for Vi804 and an analog peptide, CIDWPWC, DW3-Vi804. Chapter 6 explores the solution conformation of hybrid sequences containing α and γ residues. Oligopeptides of the type (αγ)n and (αγγ)n have been studied in solution by NMR methods. Chapter 7 provides a summary of the results described in this thesis and highlights the major conclusions.
|
Page generated in 0.0617 seconds