Spelling suggestions: "subject:"cyclohexanoxidation"" "subject:"methanoxidation""
1 |
Reaktions- und sicherheitstechnische Untersuchung der partiellen Autoxidation von Cyclohexan in MikrostrukturenFischer, Johannes 01 July 2011 (has links) (PDF)
In dieser Arbeit wird die partielle Autoxidation von Cyclohexan zu Cyclohexanol und Cyclohexanon mit Luftsauerstoff in einem Kapillarrohrreaktor untersucht. Gegenüber dem konventionellen Verfahren wurde die Temperatur auf 180-250°C und der Druck auf 20-80 bar angehoben. Auf diese Weise konnte eine Steigerung der Raum-Zeit-Ausbeute um etwa den Faktor 200 (von 25 kg/m³*h auf ca. 6000 kg/m³*h) erreicht werden. Die Umsätze sind dabei denen der industriellen Anlage vergleichbar. Die Selektivität der partiellen Oxidation zu den Wertprodukten cyclohexanol, Cyclohexanon und Cyclohexylhydroperoxid liegt im Kapillarrohrreaktor mit 80-90 % etwas unter den in der industriellen Anlage erreichbaren Selektivität von ca. 90-95 %.
Die Reaktion im Kapillarrohrreaktor wurde auch aus sicherheitstechnischer Perspektive untersucht. Cyclohexan ist in die Explosionsgruppe IIA eingeordnet. Um das System in konservativer Weise zu betrachten, wurde als Stoffsystem Ethen (Referenzgas der Explosionsgruppe IIB) im Gemisch mit Sauerstoff bzw. Lachgas ausgewählt. Es wurde ein Versuchsaufbau konstruiert, mit dem ex möglich war stabile Detonationen zu erzeugen, diese in die Mikrostruktur einzuleiten und deren Ausbreitung und ggf. Austritt aus der Mikrostruktur zu beobachten. Im Versuchsprogramm wurde der Anfangsdruck im Bereich von 0,1 bis 10 bar und der Rohrdruchmesser der eingesetzten Kapillarrohr im Bereich von 0,13 - 1 mm variiert. Es zeigt sich, dass sich stabile Detonationen von stöchiometrischen Ethen/Sauerstoff-Gemischen bei einem Anfangsdruck von 1 bar abs gerade noch durch eine Kapillare mit einem Innendurchmesser von 0,13 mm ausbreiten können. Es wurde aus den Messdaten und theoretischen Betrachtungen eine Kennzahl für die Bewertung von Mikrostrukturierten Bauteilen entwickelt und diskutiert: der maximale sichere Rohrdurchmesser. / In this thesis a process is described for the uncatalyzed selective oxidation of cyclohexane with air at high-p, T-conditions in a micro capillary reactor. At 533 K a spacetime-yield of about 6000 kg/(m3 ? h) is reached, which corresponds to a size of 2 m x 2 m x 2 m(8 m3) of the microstructured reactor assuming a capacity of 100000 t/a compared to 500 m3 total reactor volume realized with a cascade of bubble columns of each about 100 m3. Unfortunately, selectivity drops at this temperature below 80 % which is significantly lower than the selectivity in the conventional process. With the help of the Hatta number, mass transfer limitations can be excluded for the micro capillary reactor, whereas the bubble column reactor is weakly limited by the gas/liquid mass transfer of the molecular oxygen. Thus, process intensification by enhancing mass transfer using a microstructured reactor for cyclohexane oxidation with air is quite low. Furthermore a method and its corresponding results are presented for the determination of maximum safe capillary diameters, which may be used to describe the extended range of safe operation conditions for gas phase oxidation reactions in microstructured reactor devices. Sections of stainless steel micro capillaries of different inner diameters are mounted between a primary and a secondary chamber. An explosion is ignited in the primary chamber, where also a deflagration to detonation transition occurs. The propagation of the detonation through the stainless steel micro capillaries is monitored by pressure transducers located between the sections of the micro capillaries. This setup is used in order to determine explosion velocities inside the capillaries, maximum safe initial pressures and corresponding maximum safe capillary diameters. Initial investigations are performed with an ideal stoichiometric mixture necessary for complete combustion of ethene with oxygen respectively ethene and nitrous oxide at room temperature. The measured maximum safe capillary diameters obey an indirect proportionality to the initial pressures. The maximum safe capillary diameter can be estimated on the basis of the lambda/3-rule.
|
2 |
Reaktions- und sicherheitstechnische Untersuchung der partiellen Autoxidation von Cyclohexan in MikrostrukturenFischer, Johannes 10 June 2011 (has links)
In dieser Arbeit wird die partielle Autoxidation von Cyclohexan zu Cyclohexanol und Cyclohexanon mit Luftsauerstoff in einem Kapillarrohrreaktor untersucht. Gegenüber dem konventionellen Verfahren wurde die Temperatur auf 180-250°C und der Druck auf 20-80 bar angehoben. Auf diese Weise konnte eine Steigerung der Raum-Zeit-Ausbeute um etwa den Faktor 200 (von 25 kg/m³*h auf ca. 6000 kg/m³*h) erreicht werden. Die Umsätze sind dabei denen der industriellen Anlage vergleichbar. Die Selektivität der partiellen Oxidation zu den Wertprodukten cyclohexanol, Cyclohexanon und Cyclohexylhydroperoxid liegt im Kapillarrohrreaktor mit 80-90 % etwas unter den in der industriellen Anlage erreichbaren Selektivität von ca. 90-95 %.
Die Reaktion im Kapillarrohrreaktor wurde auch aus sicherheitstechnischer Perspektive untersucht. Cyclohexan ist in die Explosionsgruppe IIA eingeordnet. Um das System in konservativer Weise zu betrachten, wurde als Stoffsystem Ethen (Referenzgas der Explosionsgruppe IIB) im Gemisch mit Sauerstoff bzw. Lachgas ausgewählt. Es wurde ein Versuchsaufbau konstruiert, mit dem ex möglich war stabile Detonationen zu erzeugen, diese in die Mikrostruktur einzuleiten und deren Ausbreitung und ggf. Austritt aus der Mikrostruktur zu beobachten. Im Versuchsprogramm wurde der Anfangsdruck im Bereich von 0,1 bis 10 bar und der Rohrdruchmesser der eingesetzten Kapillarrohr im Bereich von 0,13 - 1 mm variiert. Es zeigt sich, dass sich stabile Detonationen von stöchiometrischen Ethen/Sauerstoff-Gemischen bei einem Anfangsdruck von 1 bar abs gerade noch durch eine Kapillare mit einem Innendurchmesser von 0,13 mm ausbreiten können. Es wurde aus den Messdaten und theoretischen Betrachtungen eine Kennzahl für die Bewertung von Mikrostrukturierten Bauteilen entwickelt und diskutiert: der maximale sichere Rohrdurchmesser. / In this thesis a process is described for the uncatalyzed selective oxidation of cyclohexane with air at high-p, T-conditions in a micro capillary reactor. At 533 K a spacetime-yield of about 6000 kg/(m3 ? h) is reached, which corresponds to a size of 2 m x 2 m x 2 m(8 m3) of the microstructured reactor assuming a capacity of 100000 t/a compared to 500 m3 total reactor volume realized with a cascade of bubble columns of each about 100 m3. Unfortunately, selectivity drops at this temperature below 80 % which is significantly lower than the selectivity in the conventional process. With the help of the Hatta number, mass transfer limitations can be excluded for the micro capillary reactor, whereas the bubble column reactor is weakly limited by the gas/liquid mass transfer of the molecular oxygen. Thus, process intensification by enhancing mass transfer using a microstructured reactor for cyclohexane oxidation with air is quite low. Furthermore a method and its corresponding results are presented for the determination of maximum safe capillary diameters, which may be used to describe the extended range of safe operation conditions for gas phase oxidation reactions in microstructured reactor devices. Sections of stainless steel micro capillaries of different inner diameters are mounted between a primary and a secondary chamber. An explosion is ignited in the primary chamber, where also a deflagration to detonation transition occurs. The propagation of the detonation through the stainless steel micro capillaries is monitored by pressure transducers located between the sections of the micro capillaries. This setup is used in order to determine explosion velocities inside the capillaries, maximum safe initial pressures and corresponding maximum safe capillary diameters. Initial investigations are performed with an ideal stoichiometric mixture necessary for complete combustion of ethene with oxygen respectively ethene and nitrous oxide at room temperature. The measured maximum safe capillary diameters obey an indirect proportionality to the initial pressures. The maximum safe capillary diameter can be estimated on the basis of the lambda/3-rule.
|
Page generated in 0.1175 seconds