• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Interaction of suppressor of cytokine signalling 3 with cavin-1 links SOCS3 function and cavin-1 stability

Williams, Jamie J.L., Alotaiq, N., Mullen, W., Burchmore, R., Liu, L., Baillie, G.S., Schaper, F., Pilch, P.F., Palmer, Timothy M. 12 January 2018 (has links)
Yes / Effective suppression of JAK–STAT signalling by the inducible inhibitor “suppressor of cytokine signalling 3” (SOCS3) is essential for limiting signalling from cytokine receptors. Here we show that cavin-1, a component of caveolae, is a functionally significant SOCS3- interacting protein. Biochemical and confocal imaging demonstrate that SOCS3 localisation to the plasma membrane requires cavin-1. SOCS3 is also critical for cavin-1 stabilisation, such that deletion of SOCS3 reduces the expression of cavin-1 and caveolin-1 proteins, thereby reducing caveola abundance in endothelial cells. Moreover, the interaction of cavin-1 and SOCS3 is essential for SOCS3 function, as loss of cavin-1 enhances cytokine-stimulated STAT3 phosphorylation and abolishes SOCS3-dependent inhibition of IL-6 signalling by cyclic AMP. Together, these findings reveal a new functionally important mechanism linking SOCS3-mediated inhibition of cytokine signalling to localisation at the plasma membrane via interaction with and stabilisation of cavin-1. / This work was supported by project grants to T.M.P. from the Chief Scientist Office (ETM/226), British Heart Foundation (PG12/1/ 29276, PG 14/32/30812), and a National Health Service Greater Glasgow and Clyde Research Endowment Fund (2011REFCH08). P.F.P. was supported by the National Institutes of Health grant DK097708. J.J.L.W. was supported by a doctoral training studentship from the Biotechnology and Biological Sciences Research Council Doctoral Training Programme in Biochemistry and Molecular Biology at the University of Glasgow (BB/F016735/1). N.A. was supported by a Saudi Government PhD Scholarship. This work was also supported in part by equipment grants to T.M.P. from Diabetes UK (BDA 11/0004309) and Alzheimer’s Research UK (ARUK-EG2016A-3).
2

Suppressor of cytokine signalling 3 (SOCS3) turnover and regulation of human saphenous vein smooth muscle cell signalling and function

Moshapa, Florah T. January 2021 (has links)
Neointimal hyperplasia (NIH) is a cardiovascular disease characterised by increased smooth muscle cell (SMC) inflammation and proliferation. Suppressor of cytokine signalling 3 (SOCS3) limits Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathways involved in vascular remodelling but is limited by its short biological half-life. Therefore, mutation of all 9 Lys residues that are potential sites of ubiquitylation to Arg should produce a mutated SOCS3 resistant to ubiquitin-mediated proteasomal degradation (“Lys-less” SOCS3). This study hypothesise that enhancing SOCS3 stability and limiting JAK/STAT signalling may provide sustained inhibition of the vascular remodelling in NIH. Lentiviral transduction of WT and Lys-less SOCS3 in human saphenous vein (HSVSMCs) was highly efficient after 48 hours (>97%) and was sustained over 2 weeks. Lys-less SOCS3 was resistant to ubiquitylation contrary to WT-transduced HSVECs, and Lys-less SOCS3 was more stable (t1/2=4h) than WT (t1/2<4h) (n=6, P<0.001) in HSVSMCs. In HSVSMCs, both Lys-less SOCS3 and WT inhibited sIL-6Rα/IL-6 mediated STAT3 activation but not extracellular signal regulated protein kinase 1/2 (ERK1/2) by 80±7% (Lys-lessSOCS3/pSTAT3) and 74±6% (WT/pSTAT3) (n=3, P<0.05) and similarly inhibited PDGF-mediated STAT3 activation but not ERK1/2 by 67±17% (Lys-less SOCS3/pSTAT3) and 72±18% (WT/pSTAT3) (n=3, P<0.05). Functionally, Lys-less SOCS3 and WT were equivalent in inhibiting sIL-6Rα/IL-6 and PDGF-induced proliferation, whilst having no effects on PDGF-induced migration in HSVSMCs. Lys-less SOCS3 can be successfully transduced into primary HSVSMCs. It is more stable than WT yet retains its functional ability to ameliorate pro-inflammatory signalling and SMC proliferation, making it an attractive option for developing treatment of NIH. / University of Botswana

Page generated in 0.0807 seconds