• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 6
  • 3
  • 3
  • 2
  • 1
  • Tagged with
  • 41
  • 9
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

In silico characterisation of the four canonical plasmodium falciparum 70 kDa heat shock proteins

Hatherley, Rowan January 2012 (has links)
The 70 kDa heat shock proteins expressed by Plasmodium falciparum (PfHsp70s) are believed to be essential to both the survival and virulence of the malaria parasite. A total of six Hsp70 genes have been identified in the genome of P. falciparum. However, only four of these encode canonical Hsp70s, which are believed to localise predominantly in the cytosol (PfHsp70-1 and PfHsp70-x), the endoplasmic reticulum (PfHsp70-2) and mitochondria (PfHsp70-3) of the parasite. These proteins bind and release peptide substrates in an ATP-dependent manner, with the aid of a J-domain protein cochaperone and a nucleotide exchange factor (NEF). The aim of this study was to identify the residues involved in the interaction of these PfHsp70s with their peptide substrates, their J-domain cochaperones and potential NEFs. These residues were then mapped to three-dimensional (3D) structures of the proteins, modelled in three different conformations; each representing a different stage in the ATPase cycle. Additionally, these proteins were compared to different types of Hsp70s from a variety of different organisms and sequence features found to be specific to each PfHsp70 were mapped to their 3D structures. Finally, a novel modelling method was suggested, in which the structures of templates were remodelled to improve their quality before they were used in the homology modelling process. Based on the analysis of residues involved in interactions with other proteins, it was revealed that each PfHsp70 displayed features that were specific to its cellular localisation and each type of Hsp70 was predicted to interact with a different set of NEFs. The study of conserved features in each PfHsp70 revealed that PfHsp70-x displayed various sequence features atypical of both Plasmodium cytosolic Hsp70s and cytosolic Hsp70s in general. Additionally, residues conserved specifically in Hsp70s of Apicomplexa, Plasmodium and P. falciparum were identified and mapped to the each PfHsp70 model. Although these residues were too numerous to reveal any information of specific value, these models may be useful for the purposes of aiding the design of drug compounds against each PfHsp70. Finally, the novel modelling approach did show some promise. Half of the models produced using the modified templates were of a higher quality than their counterparts modelled using the original templates. This approach does still require a lot of validation work and statistical evaluation. It is hoped that it could prove to be a useful approach to homology modelling when the only templates available are poor quality structures.
32

Sexual Dimorphism of Glucocorticoid Binding in Rat Brain

Turner, Barbara B., Weaver, Debra A. 16 September 1985 (has links)
Glucocorticoids bind with high affinity to intracellular receptors located in high density within discrete regions of the rodent and primate brain. The binding of [3H]corticosterone was compared in the brains of male vs female rats. The number and affinity of cytosol receptors in the hippocampus and hypothalamus were examined in vitro. The cytosolic binding capacity of the hippocampus is greater in the female than in the male. This difference in binding capacity is not dependent on the presence of gonadal steroids: the effect of gonadectomy was not significant for either sex. The difference is not due to transcortin since the binding capacity of [3H]dexamethasone is also greater in the female hippocampus. Receptor affinity in the female hippocampus is half that of the male value. In the hypothalamus, the dimorphism is in the opposite direction: the number of [3H]corticosterone cytosolic binding sites was found to be greater in the male. The male hypothalamus also showed a greater affinity for [3H]corticosterone than did the female. Ovariectomy increased the number of binding sites in the female hypothalamus. In vivo nuclear uptake of a tracer dose of [3H]corticosterone was determined in animals having intact gonads. The percent of tissue [3H]corticosterone present in cell nuclei from 4 brain regions, including the hippocampus and hypothalamus, was calculated per unit DNA. The concentrations of [3H]corticosterone in nuclei relative to tissue homogenates were higher in females than males for the 4 brain regions, but not for the pituitary or liver. The data are interpreted as suggesting that glucocorticoid secretion under basal conditions and during stress may differentially effect specific brain structures in male vs female rats.
33

Influence of Insulin Resistance on Contractile Activity-Induced Anabolic Response of Skeletal Muscle

Nilsson, Mats I. 2009 December 1900 (has links)
Although the long-term therapeutic benefits of exercise are indisputable, contractile activity may induce divergent adaptations in insulin-resistant vs. insulin-sensitive skeletal muscle. The purpose of this study was to elucidate if the anabolic response following resistance exercise (RE) is altered in myocellular sub-fractions in the face of insulin resistance. Lean (Fa/?) and obese (fa/fa) Zucker rats were assigned to sedentary and RE groups and engaged in either cage rest or four lower-body RE sessions over an 8-d period. Despite obese Zucker rats having significantly smaller hindlimb muscles when compared to age-matched lean rats, basal 24-h fractional synthesis rates (FSR) of mixed protein pools were near normal in distally located muscle groups (gastrocnemius, plantaris, and soleus) and even augmented in those located more proximally (P<0.05; quadriceps). Although 2 x 2 ANOVA indicated a significant main effect of phenotype on mixed FSR in gastrocnemius and soleus (P < 0.05), phenotypic differences were partially accounted for by an exercise effect in the lean phenotype. Interestingly, obese rats exhibited a significant suppression of myofibrillar FSR compared to their lean counterparts (P<0.05; gastrocnemius), while synthesis rates of mitochondrial and cytosolic proteins were normal (gastrocnemius and quadriceps), suggesting a mechanism whereby translation of specific mRNA pools encoding for metabolic enzymes may be favored over other transcripts (e.g., contractile proteins) to cope with nutrient excess in the insulin-resistant state. Immunoblotting of the cytosolic fraction in gastrocnemius muscle indicated an augmented phosporylation of eIF4EBP1 (+ 9%) and p70s6k (+85%) in obese vs. lean rats, but a more potent baseline inhibition of polypeptide-chain elongation as evidenced by an increased phospho/total ratio of eEF2 (+78%) in the obese phenotype. Resistance exercise did not improve synthesis rates of myofibrillar, cytosolic, or mitochondrial proteins to the same extent in obese vs. lean rats, suggesting a desensitization to contractile-induced anabolic stimuli in the insulin-resistant state. We conclude that insulin resistance has diverse effects on protein metabolism, which may vary between muscle groups depending on fiber type distribution, location along the proximodistal body axis, and myocellular sub-fraction, and may blunt the anabolic response to voluntary resistance exercise.
34

The effect of varying times of ischemia on the levels of glutathione in the cytosol and mitochondria of the rat kidney

Taylor, Matthew A. January 2002 (has links)
Ischemia caused by the disruption of blood flow results in kidney damage and dysfunction. This study investigated the effects of 30, 60 or 120 minutes of renal ischemia on the levels of glutathione (GSH), the major antioxidant inside cells. Kidneys from anesthetized female Lewis rats (9 months old) were clamped to induce ischemia and then homogenized and separated into cytosolic and mitochondria fractions by differential centrifugation. The levels of GSH and oxidized glutathione (GSSG) in the fractions were measured spectrophotometrically or by capillary electrophoresis. A significant reduction in GSH levels in the cytosol and mitochondria was seen only after the kidney underwent 60 minutes of ischemia. The significant decrease in GSH was accompanied by an increase in the GSSG/GSH ratio and an alteration in the glutathione redox ratio (i.e., GSH/total glutathione). This study demonstrates that an ischemic time of 60 minutes or longer is necessary to cause depletion of GSH levels in the rat kidney. / Department of Physiology and Health Science
35

Regulation of pancreatic and parotid zymogen granule chloride and potassium ion conductance pathways by cytosol nucleotides: Phosphorylation-dependent and -independent mechanisms

Thevenod, Frank January 1993 (has links)
No description available.
36

Identification d'auto-antigènes et caractérisation d'auto-anticorps dans les hépatites auto-immunes

Hajoui, Oumnia January 2005 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
37

Mapeamento de proteínas alvo para novos antifúngicos na fração microssomal e citosólica do patógeno humano Aspergillus fumigatus / Mapping target proteins for new antifungals in the microsomal and cytosolic fraction of the human pathogen Aspergillus fumigatus

Ivy Ortega Medeiros Zanon da Silva 21 March 2013 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / A incidência de infecções fúngicas invasivas vem aumentando nos últimos anos. Estas infecções, em geral, apresentam altas taxas de mortalidade. A profilaxia com antifúngicos ainda é a estratégia mais comum na contenção da mortalidade e prevenção contra infecções fúngicas invasivas, porém, apresenta baixa eficiência, e relatos de resistência às drogas. Além disso, a terapia antifúngica é limitada a um pequeno grupo de drogas, como os polienos, azóis e equinocandinas. Desta forma, a busca de novos alvos de drogas é fundamental para o desenvolvimento de novos antifúngicos. Estudos in silico indicaram quatro genes como potenciais alvo de drogas em fungos patogênicos. Neste contexto, o objetivo deste trabalho foi verificar a expressão das proteínas codificadas por dois destes possíveis genes alvo, a proteína erg6, na fração microssomal, e trr1, na fração citosólica, em hifas de A. fumigatus. Visando alcançar este objetivo, foram primeiramente padronizadas todas as etapas de fracionamento celular visando isolar estas duas subfrações celulares de A. fumigatus. Posteriormente, foi otimizado o protocolo de extração e reidratação de proteínas microssomais bem como reidratação de proteínas citosólicas. Estes extratos foram submetidos a diferentes protocolos de fracionamento proteico em um sistema de eletroforese OFFGEL (OGE). Os resultados de Western immunoblot mostraram que estas duas proteínas, erg6 e trr1, são de fato expressas na fase filamentosa de A. fumigatus. O extrato proteico da fração microssomal submetido ao OGE em doze subfrações apresentou três subunidades da proteína erg6, reconhecidas pelo anticorpo monoclonal, com massas moleculares e pI distintos: uma subunidade de aproximadamente 79 kDa com pI entre 5,91 e 6,49, e outras duas subunidades de aproximadamente 35 kDa e 32 kDa, ambas com pI entre 6,49 e 7,08. A enzima erg6 foi descrita como um homotetrâmero em outros fungos. Porém, nossos resultados sugerem que, em A. fumigatus, a erg6 possui uma estrutura heterotetramérica. Quanto à proteína trr1, tanto no extrato total quanto nas frações resultantes do fracionamento em OGE, uma banda única de aproximadamente 40 kDa, com pI na faixa de 4,79 e 5,33, foi reconhecida pelo anticorpo policlonal. Desta forma, esta proteína parece ter uma estrutura homodimérica, assim como descrito em outros micro-organismos. / The invasive fungal infections incidence has increased in recent years. These infections usually presents high mortality rates. Antifungal prophylaxis remains the most common clinical strategy to decrease mortality and prevent invasive fungal infections, however, it has low efficiency and drug resistance reports. Furthermore, antifungal therapy is limited to a small group of drugs such as polyenes, azoles, and echinocandins. Thus, the search for new drug targets is imperative for the new antifungal agents development. In silico studies have indicated four genes as potential drug target in pathogenic fungi. In this context, our aim was to investigate the expression of two proteins encoded by two putative target genes, erg6 in the microsomal fraction, and trr1 in the cytosolic fraction of A. fumigatus hyphae. To achieve this goal, we first standardized all steps of cell fractionation to isolate these two fractions of A. fumigatus hyphae. Subsequently, was optimized the protein extraction and rehidratation protocols of these two subfractions, such as cytosolic proteins rehidratation. These extracts were submitted to different protocols for protein fractionation in an OFFGEL electrophoresis system (OGE). The Western immunoblot results showed that these two proteins, erg6 and trr1, are expressed in filamentous phase of A. fumigatus. The microsomal protein extract submitted to the OGE in twelve fractions, showed three erg6 protein subunits recognized by monoclonal antibody, with distincts molecular weight and pI: a subunit with approximately 79 kDa, with pI in the range of 5,91 and 6,49, and others two subunits with 35 kDa and 32 kDa, both with pI between 6,49 and 7,08. The enzyme erg6 was described as a homotetramer in other fungi, however, our results suggest that in A. fumigatus the erg6 has a heterotetrameric structure. Regarding trr1 protein, in both, total and fractionated (OGE) extracts, a single band of approximately 40 kDa, with pI in the range of 4.79 and 5.33, was recognized by the polyclonal antibody, suggesting that this protein appears to have a homodimeric structure, as described in other microorganisms.
38

Requirement of HSP70s in the cytosol to vacuole transport of aminopeptidase 1 in Saccharomyces cerevisiae

Satyanarayana, Chitkala 01 November 2000 (has links)
No description available.
39

Mapeamento de proteínas alvo para novos antifúngicos na fração microssomal e citosólica do patógeno humano Aspergillus fumigatus / Mapping target proteins for new antifungals in the microsomal and cytosolic fraction of the human pathogen Aspergillus fumigatus

Ivy Ortega Medeiros Zanon da Silva 21 March 2013 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / A incidência de infecções fúngicas invasivas vem aumentando nos últimos anos. Estas infecções, em geral, apresentam altas taxas de mortalidade. A profilaxia com antifúngicos ainda é a estratégia mais comum na contenção da mortalidade e prevenção contra infecções fúngicas invasivas, porém, apresenta baixa eficiência, e relatos de resistência às drogas. Além disso, a terapia antifúngica é limitada a um pequeno grupo de drogas, como os polienos, azóis e equinocandinas. Desta forma, a busca de novos alvos de drogas é fundamental para o desenvolvimento de novos antifúngicos. Estudos in silico indicaram quatro genes como potenciais alvo de drogas em fungos patogênicos. Neste contexto, o objetivo deste trabalho foi verificar a expressão das proteínas codificadas por dois destes possíveis genes alvo, a proteína erg6, na fração microssomal, e trr1, na fração citosólica, em hifas de A. fumigatus. Visando alcançar este objetivo, foram primeiramente padronizadas todas as etapas de fracionamento celular visando isolar estas duas subfrações celulares de A. fumigatus. Posteriormente, foi otimizado o protocolo de extração e reidratação de proteínas microssomais bem como reidratação de proteínas citosólicas. Estes extratos foram submetidos a diferentes protocolos de fracionamento proteico em um sistema de eletroforese OFFGEL (OGE). Os resultados de Western immunoblot mostraram que estas duas proteínas, erg6 e trr1, são de fato expressas na fase filamentosa de A. fumigatus. O extrato proteico da fração microssomal submetido ao OGE em doze subfrações apresentou três subunidades da proteína erg6, reconhecidas pelo anticorpo monoclonal, com massas moleculares e pI distintos: uma subunidade de aproximadamente 79 kDa com pI entre 5,91 e 6,49, e outras duas subunidades de aproximadamente 35 kDa e 32 kDa, ambas com pI entre 6,49 e 7,08. A enzima erg6 foi descrita como um homotetrâmero em outros fungos. Porém, nossos resultados sugerem que, em A. fumigatus, a erg6 possui uma estrutura heterotetramérica. Quanto à proteína trr1, tanto no extrato total quanto nas frações resultantes do fracionamento em OGE, uma banda única de aproximadamente 40 kDa, com pI na faixa de 4,79 e 5,33, foi reconhecida pelo anticorpo policlonal. Desta forma, esta proteína parece ter uma estrutura homodimérica, assim como descrito em outros micro-organismos. / The invasive fungal infections incidence has increased in recent years. These infections usually presents high mortality rates. Antifungal prophylaxis remains the most common clinical strategy to decrease mortality and prevent invasive fungal infections, however, it has low efficiency and drug resistance reports. Furthermore, antifungal therapy is limited to a small group of drugs such as polyenes, azoles, and echinocandins. Thus, the search for new drug targets is imperative for the new antifungal agents development. In silico studies have indicated four genes as potential drug target in pathogenic fungi. In this context, our aim was to investigate the expression of two proteins encoded by two putative target genes, erg6 in the microsomal fraction, and trr1 in the cytosolic fraction of A. fumigatus hyphae. To achieve this goal, we first standardized all steps of cell fractionation to isolate these two fractions of A. fumigatus hyphae. Subsequently, was optimized the protein extraction and rehidratation protocols of these two subfractions, such as cytosolic proteins rehidratation. These extracts were submitted to different protocols for protein fractionation in an OFFGEL electrophoresis system (OGE). The Western immunoblot results showed that these two proteins, erg6 and trr1, are expressed in filamentous phase of A. fumigatus. The microsomal protein extract submitted to the OGE in twelve fractions, showed three erg6 protein subunits recognized by monoclonal antibody, with distincts molecular weight and pI: a subunit with approximately 79 kDa, with pI in the range of 5,91 and 6,49, and others two subunits with 35 kDa and 32 kDa, both with pI between 6,49 and 7,08. The enzyme erg6 was described as a homotetramer in other fungi, however, our results suggest that in A. fumigatus the erg6 has a heterotetrameric structure. Regarding trr1 protein, in both, total and fractionated (OGE) extracts, a single band of approximately 40 kDa, with pI in the range of 4.79 and 5.33, was recognized by the polyclonal antibody, suggesting that this protein appears to have a homodimeric structure, as described in other microorganisms.
40

Dieldrin Induces Cytosolic [3H]7, 12-Dimethylbenz[a]Anthracene Binding but Not Multidrug Resistance Proteins in Rainbow Trout Liver

Curtis, L. R., Hemmer, M. J., Courtney, L A. 01 June 2000 (has links)
Previously it was demonstrated that biliary excretion of a single dose of [14C]dieldrin or [3H]7, 12-dimethylbenz/alanthracene (DMBA) was stimulated up to 700% and 300%, respectively, in rainbow trout fed 0.3-0.4 mg dieldrin/kg/d for 9-12 wk. This was not explained by increased activities of hepatic microsomal xenobiotic-metabolizing enzymes or increased amounts of any of six cytochrome P-450 isozymes quantitated by Western blots. It was hypothesized that stimulated excretion was explained by induction of (1) cytosolic binding proteins that facilitated intracellular trafficking of DMBA to sites of metabolism, or (2) ATP-dependent proteins that transport xenobiotic metabolites from liver to bile. Binding of 15 and 60 nmol [3H]DMBA/mg protein increased about 200% in hepatic cytosol from dieldrin-fed fish. A 50-fold molar excess of unlabeled DMBA reduced binding of 15 nmol [3H]DMBA/mg protein (nonspecific binding) by the same amount in cytosol from control and dieldrin-fed fish, indicating that dieldrin induced specific binding. Liver sections from control and dieldrin-fed fish were treated with multidrug resistance (MDR) protein monoclonal antibodies C494, C219, and JSB-1, and polyclonal antibody MDR Ab-1. There were no marked differences in optical densities of immunohistochemical staining near bile canaliculi of control and dieldrin-fed fish. Induction of xenobiotic binding capacity in cytosol of dieldrin-fed rainbow trout at least partially explained altered DMBA disposition in fish pretreated with this cyclodiene insecticide.

Page generated in 0.0241 seconds