Spelling suggestions: "subject:"mitochondria -- informationation"" "subject:"itochondria -- informationation""
1 |
The Regulation of Mitochondrial Complex I Biogenesis in Drosophila Flight MusclesGarcia, Christian Joel January 2020 (has links)
Mitochondrial Complex I (CI) is composed of 44 distinct subunits that are assembled with eight Fe- S clusters and a single flavin mononucleotide. Mitochondria is highly enriched in the flight muscles of Drosophila melanogaster, however the assembly mechanism of Drosophila CI has not been described. We report that the mechanism of CI biogenesis in Drosophila flight muscles proceeds via the formation of ~315- , ~550-, and ~815 kDa CI assembly intermediates. Additionally, we define specific roles for several CI subunits in the assembly process. In particular, we show that dNDUFS5 is required for converting the ~700 kDa transient CI assembly intermediate into the ~815 kDa assembly intermediate, by stabilizing or promoting the incorporation of dNDUFA10 into the complex. Our findings highlight the potential values of Drosophila as a suitable model organism and resource to study the CI biogenesis in vivo, and to address questions relevant to CI biogenesis in humans.
CI biogenesis is regulated by transient interactors known as CI assembly factors (CIAFs). To date, about half of CI disorders are attributed to the mutations in the CI subunits and the known CIAFs. The cause for the other half remains to be discovered, warranting the investigation for additional regulators of CI biogenesis such as novel CIAFs. To identify novel regulators, we cataloged interactors of a core subunit, NDUFS3, knocked each one down by RNAi in the Drosophila flight muscle, and analyzed its effect in the stability of CI by blue-native PAGE. We identified the Drosophila Fragile X Mental Retardation protein (dFMRP) to destabilize the holoenzyme of CI and cause it to misassemble. Therefore, we report dFMRP as a novel regulator of CI biogenesis, and demonstrate the utilization of Drosophila as an effective model system to uncover the mysteries of CI biogenesis.
|
2 |
In silico characterisation of the four canonical plasmodium falciparum 70 kDa heat shock proteinsHatherley, Rowan January 2012 (has links)
The 70 kDa heat shock proteins expressed by Plasmodium falciparum (PfHsp70s) are believed to be essential to both the survival and virulence of the malaria parasite. A total of six Hsp70 genes have been identified in the genome of P. falciparum. However, only four of these encode canonical Hsp70s, which are believed to localise predominantly in the cytosol (PfHsp70-1 and PfHsp70-x), the endoplasmic reticulum (PfHsp70-2) and mitochondria (PfHsp70-3) of the parasite. These proteins bind and release peptide substrates in an ATP-dependent manner, with the aid of a J-domain protein cochaperone and a nucleotide exchange factor (NEF). The aim of this study was to identify the residues involved in the interaction of these PfHsp70s with their peptide substrates, their J-domain cochaperones and potential NEFs. These residues were then mapped to three-dimensional (3D) structures of the proteins, modelled in three different conformations; each representing a different stage in the ATPase cycle. Additionally, these proteins were compared to different types of Hsp70s from a variety of different organisms and sequence features found to be specific to each PfHsp70 were mapped to their 3D structures. Finally, a novel modelling method was suggested, in which the structures of templates were remodelled to improve their quality before they were used in the homology modelling process. Based on the analysis of residues involved in interactions with other proteins, it was revealed that each PfHsp70 displayed features that were specific to its cellular localisation and each type of Hsp70 was predicted to interact with a different set of NEFs. The study of conserved features in each PfHsp70 revealed that PfHsp70-x displayed various sequence features atypical of both Plasmodium cytosolic Hsp70s and cytosolic Hsp70s in general. Additionally, residues conserved specifically in Hsp70s of Apicomplexa, Plasmodium and P. falciparum were identified and mapped to the each PfHsp70 model. Although these residues were too numerous to reveal any information of specific value, these models may be useful for the purposes of aiding the design of drug compounds against each PfHsp70. Finally, the novel modelling approach did show some promise. Half of the models produced using the modified templates were of a higher quality than their counterparts modelled using the original templates. This approach does still require a lot of validation work and statistical evaluation. It is hoped that it could prove to be a useful approach to homology modelling when the only templates available are poor quality structures.
|
3 |
A Metabolic Basis for Vascular Remodeling in Pulmonary Arterial HypertensionSutendra, Gopinath Unknown Date
No description available.
|
4 |
Bone Metabolism: The Role of STAT3 and Reactive Oxygen SpeciesNewnum, America Bethanne 14 August 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Signal Transducers and Activators of Transcription 3 (STAT3), a transcription factor expressed in many cell types, including osteoblasts and osteoclasts, is emerging as a key regulator of bone mass and strength. STAT3 mutations cause a rare human immunodeficiency disease characterized by extremely elevated levels of IgE in serum that have associated craniofacial and skeletal features, such as reduced bone mineral density and recurrent pathological fractures. Our microarray data and immunohistochemical staining using a normal rat model have shown that STAT3 mRNA and protein levels markedly increase in response to mechanical loading. In addition, as indicated by STAT3 phosphorylation in MC3T3-E1 osteoblastic cells, STAT3 activity significantly increases in response to 30 to 90 minutes fluid shear stress. In order to further study the role that STAT3 plays in bone responsiveness to loading, tissue-selective STAT3 knockout (KO) mice, in which inactivation of STAT3 occurs in osteoblasts, were generated by breeding the transgenic mice in which Cre recombinase cDNA was cloned downstream of a 3.6 or 2.3 kb fragment of the rat Col1a1 promoter (Col3.6-Cre and Col2.3-Cre, respectively) with a strain of floxed mice in which the two loxP sites flank exons 18-20 of the STAT3 gene were used. Mice engineered with bone selective inactivation of STAT3 in osteoblasts exhibited significantly lower bone mineral density (7-12%, p<0.05) and reduced ultimate force (21-34%, p<0.01) compared to their age-matched littermate controls. The right ulnae of 16-week-old bone specific STAT3 KO mice and the age-matched control mice were loaded with peak forces of 2.5 N and 2.75 N for female and male mice, respectively, at 2 Hz, 120 cycles/day for 3 consecutive days. Mice with inactivation of STAT3 specific in bone were significantly less responsive to mechanical loading than the control mice as indicated by decreased relative mineralizing surface (rMS/BS, 47-59%, p<0.05) and relative bone formation rate (rBFR/BS, 64-75%, p<0.001). Bone responsiveness was equally decreased in mice in which STAT3 is inactivated either in early osteoblasts (Col3.6-Cre) or in mature osteoblasts (Col2.3-Cre).
Accumulating evidence indicates that bone metabolism is significantly affected by activities in mitochondria. For instance, although STAT3 is reported to be involved in bone formation and resorption through regulation of nuclear genes, inactivation of STAT3 is shown to disrupt mitochondrial activities and result in an increased level of reactive oxygen species (ROS). Inactivation of STAT3 suppressed load-driven mitochondrial activity, which led to an elevated level of ROS in cultured primary osteoblasts. Oxidative stress induced by administration of buthionine sulfoximine (BSO) significantly inhibits load-induced bone formation in wild type mice. Taken together, the results support the notion that the loss-of-function mutation of STAT3 in osteoblasts and osteocytes diminishes load-driven bone formation and impairs the regulation of oxidative stress in mitochondria.
|
Page generated in 0.1145 seconds