Spelling suggestions: "subject:"zones -- abnormalities"" "subject:"zones -- abnormailities""
1 |
Functional studies on sedlin and its involvement in spondyloepiphysealdysplasia tardaChoi, Mei-yee., 蔡美儀. January 2008 (has links)
published_or_final_version / Biochemistry / Doctoral / Doctor of Philosophy
|
2 |
Biochemical modulation and stem cell therapy for irradiated mandibleZhang, Wenbiao, 張文彪 January 2009 (has links)
published_or_final_version / Dentistry / Doctoral / Doctor of Philosophy
|
3 |
Curve progression in adolescent idiopathic scoliosis: is osteopenia a new and valid prognostic factor?.January 2004 (has links)
Hung Wing Yin Vivian. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2004. / Includes bibliographical references (leaves 128-142). / Abstracts in English and Chinese ; appendix in Chinese. / ABSTRACT --- p.i / ABSTRACT (in Chinese) --- p.iv / ACKNOWLEDGMENT --- p.vii / TABLE OF CONTENTS --- p.viii / LIST OF TABLES --- p.xiv / LIST OF FIGURES --- p.xvi / LIST OF ABBREVIATIONS --- p.xix / Chapter I. --- INTRODUCTION --- p.1 / Chapter 1.1. --- Scoliosis --- p.1 / Chapter 1.1.1. --- Classification of scoliosis --- p.1 / Chapter 1.1.2. --- Idiopathic scoliosis --- p.1 / Chapter 1.1.3. --- Clinical examination --- p.2 / Chapter 1.1.4. --- Curve pattern --- p.2 / Chapter 1.2. --- Etiology of AIS --- p.3 / Chapter 1.2.1. --- Prevalence of AIS --- p.5 / Chapter 1.2.2. --- Anthropometric Measurement in AIS --- p.5 / Chapter 1.2.3. --- Bone mass --- p.6 / Chapter 1.2.4. --- Bone mineral density measurements --- p.6 / Chapter 1.2.5. --- Osteopenia in AIS --- p.7 / Chapter 1.3. --- Natural history ofAIS --- p.8 / Chapter 1.3.1. --- Curve progression --- p.9 / Chapter 1.3.2. --- Treatment of scoliosis --- p.11 / Chapter 1.4. --- Research questions --- p.12 / Chapter 1.5. --- Objectives --- p.13 / Chapter II. --- METHODOLOGY --- p.20 / Chapter 2.1 --- Study Design --- p.20 / Chapter 2.2 --- Subject recruitment --- p.20 / Chapter 2.2.1 --- AIS patients --- p.20 / Chapter 2.2.2 --- Inclusion criteria --- p.20 / Chapter 2.2.3 --- Exclusion criteria --- p.20 / Chapter 2.2.4 --- Informed consent --- p.21 / Chapter 2.3 --- Grouping for chronological age --- p.21 / Chapter 2.4 --- Radiography assessments --- p.21 / Chapter 2.4.1 --- Cobb angle measurement --- p.21 / Chapter 2.4.2 --- Curve pattern --- p.22 / Chapter 2.4.3 --- Risser grade --- p.22 / Chapter 2.5 --- Definition of curve progression --- p.22 / Chapter 2.6 --- Bone mineral density (BMD) measurements --- p.23 / Chapter 2.6.1 --- Dual energy X-ray Absorptiometry (DXA) --- p.23 / Chapter 2.6.2 --- Peripheral quantitative computed tomography (pQCT) --- p.24 / Chapter 2.6.3 --- Definition of osteopenia or low bone mass --- p.24 / Chapter 2.7 --- Anthropometric measurements --- p.25 / Chapter 2.7.1 --- Body height --- p.25 / Chapter 2.7.2 --- Body weight --- p.26 / Chapter 2.7.3 --- Arm span --- p.26 / Chapter 2.7.4 --- Sitting height --- p.27 / Chapter 2.8 --- Family history --- p.27 / Chapter 2.9 --- Menstrual status --- p.27 / Chapter 2.10 --- Medication and fracture history --- p.27 / Chapter 2.11 --- Statistical analysis --- p.27 / Chapter 2.11.1 --- Sample size power calculation --- p.28 / Chapter 2.11.2 --- Student t test --- p.28 / Chapter 2.11.3 --- Paired t-test --- p.28 / Chapter 2.11.4 --- Predicting the incidence of curve progression --- p.28 / Chapter 2.11.4.1 --- Predictive outcome --- p.28 / Chapter 2.11.4.2 --- Potential risk factors --- p.28 / Chapter 2.11.4.3 --- Coding system for categorical variables --- p.29 / Chapter 2.11.4.4 --- Univariate analysis --- p.30 / Chapter 2.11.4.5 --- Logistic regression --- p.30 / Chapter 2.11.4.6 --- Receiver operating characteristics (ROC) curves --- p.32 / Chapter III. --- RESULTS --- p.54 / Chapter 3.1 --- Patients Characteristics --- p.54 / Chapter 3.1.1 --- Sample size --- p.54 / Chapter 3.1.2 --- Distribution of patient characteristics --- p.54 / Chapter 3.1.3 --- Drop out --- p.54 / Chapter 3.1.4 --- Prevalence of osteopenia (BMDage-adjusted ≤ -1) and low bone mass (BMCage-adjusted ≤ -1) --- p.55 / Chapter 3.1.5 --- Comparison between the BMD of the bilateral hip and tibia --- p.55 / Chapter 3.2 --- Comparison of AIS patients with osteopenia and with normal bone status --- p.55 / Chapter 3.3 --- Univariate analysis --- p.56 / Chapter 3.3.1 --- Growth related factors --- p.56 / Chapter 3.3.2 --- "Skeletal related parameters (areal BMD, volumetric BMD and BMC)" --- p.56 / Chapter 3.3.2.1 --- DXA lumbar spine --- p.56 / Chapter 3.3.2.2 --- DXA proximal femur at the convex-side hip --- p.56 / Chapter 3.3.2.3 --- DXA proximal femur at the concave-side hip --- p.57 / Chapter 3.3.2.4 --- pQCT at non-dominant distal radius --- p.57 / Chapter 3.3.2.5 --- pQCT - vBMD at convex-side distal tibia --- p.57 / Chapter 3.3.2.6 --- pQCT - vBMD at concave-side distal tibia --- p.58 / Chapter 3.3.3 --- Curve related factors --- p.58 / Chapter 3.3.4 --- Anthropometrics parameters --- p.58 / Chapter 3.3.5 --- Family history --- p.58 / Chapter 3.3.6 --- Summary of univariate analysis --- p.59 / Chapter 3.4 --- Logistic regression model (single factor) --- p.59 / Chapter 3.5 --- Logistic regression model (multiple factors) --- p.60 / Chapter 3.5.1 --- BMD inclusive model --- p.60 / Chapter 3.5.2 --- BMC inclusive model --- p.61 / Chapter 3.5.3 --- Conventional model --- p.63 / Chapter 3.6 --- ROC curve --- p.63 / Chapter 3.6.1 --- BMD inclusive model --- p.64 / Chapter 3.6.2 --- Conventional model --- p.64 / Chapter 3.7 --- Predictive equation obtained from different logistic regression models --- p.64 / Chapter 3.7.1 --- BMD inclusive model --- p.65 / Chapter 3.7.2 --- Conventional model --- p.65 / Chapter IV. --- DISCUSSION --- p.105 / Chapter 4.1 --- Prognostic factors for curve progression --- p.105 / Chapter 4.1.1 --- Well-known prognostic factors --- p.105 / Chapter 4.1.1.1 --- Growth-related factors --- p.106 / Chapter 4.1.1.2 --- Initial curve magnitude --- p.107 / Chapter 4.1.2 --- A new predictor 一 Osteopenia --- p.107 / Chapter 4.2 --- Non-significant prognostic factors for curve progression --- p.109 / Chapter 4.2.1 --- Anthropometric parameters --- p.109 / Chapter 4.2.2 --- Family History --- p.110 / Chapter 4.2.3 --- Curve pattern --- p.110 / Chapter 4.3 --- Predictive model --- p.111 / Chapter 4.4 --- Comparison of predictive models between BMD inclusive model and conventional model derived from our population --- p.115 / Chapter 4.5 --- Possible relationship between osteopenia and etiopathogensis of AIS --- p.116 / Chapter 4.6 --- Axial measurement has a better predictive power in curve progression than peripheral measurement --- p.117 / Chapter 4.7 --- Discordance of BMD in bilateral hips --- p.118 / Chapter 4.8 --- Method justifications --- p.119 / Chapter 4.8.1 --- Definition of curve progression --- p.119 / Chapter 4.8.2 --- Incidence of progression as the outcome of prediction --- p.119 / Chapter 4.8.3 --- Selection on bone densitometers --- p.119 / Chapter 4.9 --- Clinical significance --- p.121 / Chapter 4.10 --- Limitations and Future Studies --- p.122 / Chapter 4.10.1 --- Limited follow-up time --- p.122 / Chapter 4.10.2 --- No defined cutoff value for 226}0´ببosteopenia 226}0ح or low BMC in paediatric area --- p.122 / Chapter 4.10.3 --- Predictive model could only applied in local population --- p.122 / Chapter 4.10.4 --- Intrinsic error in Risser grade measurement --- p.123 / Chapter 4.10.5 --- Further studies --- p.123 / Chapter 4.10.5.1 --- Validation of the newly developed predictive model --- p.123 / Chapter 4.10.5.2 --- Possible intervention of osteopenia --- p.124 / Chapter 4.10.5.3 --- Long term follow-up BMD measurements and fracture risk in AIS patients --- p.124 / Chapter 4.10.5.4 --- Discordance of bilateral hips BMD contributed by the shift of center of gravity --- p.125 / Chapter 4.10.5.5 --- Axial QCT can be an alternative method in assessing BMDin scoliotic patients --- p.125 / Chapter V. --- CONCLUSION --- p.126 / Chapter VI. --- APPENDIX --- p.127 / Chapter VII. --- BIBLIOGRAPHY --- p.128 / Chapter VIII. --- CONFERENCE PUBLICATIONS --- p.142
|
4 |
Imaging the craniofacial skeleton : is MRI a viable alternative to ionising radiation?Eley, Karen A. January 2012 (has links)
No description available.
|
5 |
Abnormal skeletal growth and bone mineralization in the etiopathogenesis of adolescent idiopathic scoliosis. / CUHK electronic theses & dissertations collectionJanuary 2002 (has links)
by Tang Shengping. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2002. / Includes bibliographical references (p. 217-244). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Mode of access: World Wide Web. / Abstracts in English and Chinese.
|
6 |
The relationship between abnormal skeletal growth and melatonin signaling dysfunction in adolescent idiopathic scoliosis: clinical and animal model study.January 2011 (has links)
Yim, Po Yee Annie. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2011. / Includes bibliographical references (leaves 166-219). / Abstracts in English and Chinese. / Acknowledgements --- p.ii / Abstract --- p.iv / Abbreviations --- p.xi / Table of Content --- p.xiii / List of Figures --- p.xviii / List of Tables --- p.xxi / Major Conference Presentations --- p.xxiii / Publication in Preparation --- p.xxvi / Chapter Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- General Overview of Adolescent Idiopathic Scoliosis (AIS) --- p.2 / Chapter 1.2 --- Natural History --- p.3 / Chapter 1.3 --- Current Treatments --- p.5 / Chapter 1.3.1 --- Non-operative Treatments --- p.5 / Chapter 1.3.2 --- Surgical Treatments --- p.6 / Chapter 1.4 --- Current Hypothesis on the Etiology of AIS --- p.8 / Chapter 1.4.1 --- Genetic Factors --- p.8 / Chapter 1.4.2 --- Neuromuscular Impairment --- p.10 / Chapter 1.4.3 --- Abnormalities in Skeletal Development --- p.11 / Chapter 1.4.4 --- Metabolic Dysfunction --- p.12 / Chapter 1.4.4.1 --- Lower Bone Mineral Density --- p.12 / Chapter 1.4.4.2 --- Delayed Sexual Maturity --- p.14 / Chapter 1.4.4.3 --- Hormonal Dysfunction --- p.14 / Chapter 1.5 --- Skeletal arid Spinal Growth in AIS --- p.16 / Chapter 1.5.1 --- Abnormal Growth during Puberty --- p.16 / Chapter 1.5.2 --- Growth Pattern --- p.17 / Chapter 1.5.3 --- Disproportional Growth in AIS --- p.18 / Chapter 1.5.4 --- Asymmetric Growth --- p.20 / Chapter 1.6 --- Melatonin and its Receptor --- p.22 / Chapter 1.6.1 --- Introduction --- p.22 / Chapter 1.6.2 --- Melatonin Receptor --- p.24 / Chapter 1.6.3 --- Melatonin's Role in t h e Skeletal System --- p.25 / Chapter 1.6.4 --- Melatonin-Deficient Scoliotic Animal Model --- p.27 / Chapter 1.6.5 --- Melatonin and AIS --- p.29 / Chapter 1.6.5.1 --- Melatonin Level in AIS --- p.30 / Chapter 1.6.5.2 --- Melatonin Receptor in AIS --- p.30 / Chapter Chapter 2 --- Hypothesis and Objectives --- p.39 / Chapter 2.1 --- Study Hypothesis --- p.40 / Chapter 2.2 --- Objectives --- p.41 / Chapter Chapter 3 --- Abnormal skeletal growth patterns in adolescent idiopathic scoliosis - A longitudinal study till skeletal maturity --- p.42 / Chapter 3.1 --- Introduction --- p.43 / Chapter 3.2 --- Methodology --- p.44 / Chapter 3.2.1 --- Recruitments of Subjects --- p.44 / Chapter 3.2.1.1 --- Patients with AIS --- p.44 / Chapter 3.2.1.2 --- Normal Controls --- p.44 / Chapter 3.2.1.3 --- Patients Consents --- p.45 / Chapter 3.2.2 --- Anthropometric Measurements --- p.45 / Chapter 3.2.3 --- Data Analysis --- p.46 / Chapter 3.2.3.1 --- Cross-sectional Study --- p.46 / Chapter 3.2.3.2 --- Longitudinal Study --- p.46 / Chapter 3.3 --- Results --- p.47 / Chapter 3.3.1 --- Cross-sectional Study of Anthropometric Measurements --- p.47 / Chapter 3.3.2 --- Longitudinal Study of Anthropometric Measurements --- p.48 / Chapter 3.3.2.1 --- Comparison Adjusted for Chronological Age --- p.49 / Chapter 3.3.2.2 --- Comparison Along Year Since Menarche (YSM) --- p.49 / Chapter 3.4 --- Discussion --- p.51 / Chapter Chapter 4 --- Establishment of a Melatonin-Deficierit Induced Scoliotic Model with Locally Bred Chicken --- p.63 / Chapter 4.1 --- Introduction --- p.64 / Chapter 4.2 --- Methodology --- p.67 / Chapter 4.2.1 --- Animals --- p.67 / Chapter 4.2.2 --- Materials and Reagents --- p.67 / Chapter 4.2.3 --- Pinealectomy --- p.68 / Chapter 4.2.4 --- Confirmation of Pineal Gland Removal --- p.69 / Chapter 4.2.5 --- Development of Scoliosis --- p.69 / Chapter 4.2.6 --- Measurement of Long Bone Growth --- p.70 / Chapter 4.2.7 --- Measurement of Weight --- p.71 / Chapter 4.2.8 --- Measurement of Bone Mineral Density (BMD) --- p.71 / Chapter 4.2.8.1 --- Micro Computed Tomography (MicroCT) --- p.71 / Chapter 4.2.8.2 --- Image Processing and Evaluation of BMD --- p.71 / Chapter 4.2.9 --- Data Analysis --- p.72 / Chapter 4.2.9.1 --- Measurements of Long Bone Growth and Weight --- p.72 / Chapter 4.2.9.2 --- Bone Mineral Density --- p.72 / Chapter 4.3 --- Results --- p.73 / Chapter 4.3.1 --- Confirmation of Pineal Gland Removal --- p.73 / Chapter 4.3.2 --- Occurrence of Scoliosis --- p.73 / Chapter 4.3.3 --- Measurements of Long Bone and Weight --- p.74 / Chapter 4.3.4 --- Measurement of Bone Mineral Density --- p.75 / Chapter 4.4 --- Discussion --- p.76 / Chapter Chapter 5 --- Expression of Melatonin Receptor in AIS and Control --- p.102 / Chapter 5.1 --- Introduction --- p.103 / Chapter 5.2 --- Methodology --- p.105 / Chapter 5.2.1 --- Subjects Recruitments --- p.105 / Chapter 5.2.2 --- Cell Isolation --- p.106 / Chapter 5.2.2.1 --- Bone Biopsies for Osteoblasts Isolation --- p.106 / Chapter 5.2.2.2 --- Materials and Reagents --- p.106 / Chapter 5.2.2.3 --- Isolation of Osteoblasts from Bone Biopsies --- p.107 / Chapter 5.2.3 --- Expression Level and Pattern of Melatonin Receptors 1A and IB --- p.108 / Chapter 5.2.3.1 --- Materials and Reagents --- p.108 / Chapter 5.2.3.2 --- Validation of Specificities of Antibodies by Co-immunoprecipitation --- p.113 / Chapter 5.2.3.3 --- Quantification of Protein Expression of Melatonin Receptors in Osteoblasts --- p.115 / Chapter 5.2.3.4 --- Quantification of mRNA Expression of Melatonin Receptor in Osteoblast --- p.117 / Chapter 5.2.3.5 --- Localization of Melatonin Receptor 1A and IB by Immunofluorescence Staining --- p.119 / Chapter 5.2.4 --- Evaluation and Correlation of Clinical Phenotypes with Melatonin Receptor Expression --- p.120 / Chapter 5.2.5 --- Data Analysis --- p.120 / Chapter 5.3 --- Results --- p.121 / Chapter 5.3.1 --- Protein Expression of Melatonin Receptor 1A and IB --- p.121 / Chapter 5.3.2 --- mRNA Expression of Melatonin Receptor 1A and IB --- p.121 / Chapter 5.3.3 --- Localization of Melatonin Receptors 1A and IB --- p.122 / Chapter 5.3.4 --- Evaluation and Correlation of Clinical Phenotypes with Melatonin Receptor Expression --- p.123 / Chapter 5.4 --- Discussion --- p.124 / Chapter Chapter 6 --- Summary and Overall Discussion --- p.152 / Chapter 6.1 --- Study Flowchart --- p.153 / Chapter 6.2 --- Summary and Discussion --- p.159 / Chapter 6.3 --- Limitations and Further Studies --- p.163 / Bibliography --- p.166
|
7 |
Risk factors of neurosensory disturbance following bimaxillary orthognathic surgeryAlolayan, Albraa Badr A. January 2013 (has links)
Objectives: To report the incidence of objective and subjective neurosensory disturbance (NSD) after orthognathic surgery in a major orthognathic centre in Hong Kong, and to investigate the risk factors that contributed to the incidence of NSD after orthognathic surgery.
Materials and Methods: A retrospective cross-sectional study on NSD after orthognathic surgery in a local major orthognathic centre. Patients who had bimaxillary orthognathic surgery reviewed at post-operative 6 months, 12 months or 24 months were recruited to undergo a neurosensory test with subjective and 3 objective assessments. Possible risk factors of NSD including subjects’ age and gender, surgical procedures and surgeons’ experience were analyzed.
Results: 238 patients with 476 sides each of maxillary and mandibular procedures were recruited. The incidences of subjective NSD after maxillary procedures were 16.2%, 13% and 9.8% at post-operative 6 months, 12 months and 24 months, respectively; the incidences of subjective NSD after mandibular procedures were 35.4%, 36.6% and 34.6% at post-operative 6 months, 12 months and 24 months, respectively. Objective neurosensory tests showed general reduced sensitivity in subjects with subjective NSD. Increased age was found to be a significant risk factor of NSD after orthognathic surgery at short term (at 6 months and 12 months) but not at 24 months. SSO has a significantly higher risk of NSD when compared to VSSO. SSO in combination with anterior mandibular surgery has a higher risk of NSD when compared to VSSO in combination with anterior mandibular surgery or anterior mandibular surgery alone. Gender of patients a nd surgeons’ experience were not found to be risk factors of NSD after orthognathic surgery.
Conclusion: The incidence of NSD after maxillary and mandibular orthognathic procedures at post-operative 6 months, 12 months and 24 months was reported. Increased age was identified as a risk factor of short term post-operative NSD but not in long term (24 months or more). Specific mandibular procedures were related to higher incidence of NSD after orthognathic surgery. / published_or_final_version / Dental Surgery / Master / Master of Dental Surgery
|
8 |
A retrospective cephalometric study of the effect of the Frankel appliance, the ClarkTwin Block and the activator on class II division / by Con Laparidis.Laparidis, Constantinos January 1999 (has links)
Bibliography: leaves 187-211. / 288 leaves : col. ill. ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / An observational retrospective study to determine if any difference exists in the soft tissue profile of Class II division 1 patients before and after treatment with three different functional appliances; the activator with headgear, the Clark Twin Block, and the Frankel. / Thesis (M.D.S.)--University of Adelaide, Dept. of Dentistry, 1999
|
9 |
A retrospective cephalometric study of the effect of the Frankel appliance, the ClarkTwin Block and the activator on class II division / by Con Laparidis.Laparidis, Constantinos January 1999 (has links)
Bibliography: leaves 187-211. / 288 leaves : col. ill. ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / An observational retrospective study to determine if any difference exists in the soft tissue profile of Class II division 1 patients before and after treatment with three different functional appliances; the activator with headgear, the Clark Twin Block, and the Frankel. / Thesis (M.D.S.)--University of Adelaide, Dept. of Dentistry, 1999
|
10 |
Novel insights into the mechanistic gene regulation of STAT3 in bone cellsCorry, Kylie A. 25 June 2015 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Many cells are involved in the orchestra that is bone homeostasis--particularly osteoclasts and osteoblasts, which mediate remodeling of bones. This creates a balance that must be kept in check, otherwise pathologies arise. The JAK-STAT signaling pathway is crucial to maintaining this balance. It has long been known that the transcription factor STAT3 has more profound effects on bone homeostasis than other members of the STAT family of proteins. Recently, a genetic condition called Job’s Syndrome has been specifically linked to point mutations in the Stat3 gene. These patients present with severe bone abnormalities, including prominent foreheads, broad nasal bridges, and abnormal eye spacing. For this reason, our lab has extensively studied conditional knockouts of Stat3 in all three types of bones cells in mice and observed severe deficiencies in numerous parameters of normal bone phenotypes. STAT3 seems to play a principal role in the signaling that takes place upon mechanical loading of bone tissues and calling cells into action where they are needed. Furthermore,
STAT3 has been found to be up-regulated in the early-response gene cluster following mechanical loading.
Our current approach to studying STAT3’s effects on bone includes both in vivo and in vitro comparisons of WT and KO STAT3 models. The conditional knock-out of STAT3 in 8-week old mice revealed significant phenotypic variations as compared to the WT controls, while no significant differences were observed in cKO newborn pups. We also looked at immortalized WT and STAT3 KO cell lines. The STAT3 KO cells had diminished proliferation rates and decreased differentiation capabilities. Furthermore, STAT3 KO cells showed significantly reduced mRNA levels of both Wnt3a and Wnt5a when exposed to fluid shear stress.
By employing available ChIP-seq data, we were able to elucidate the genome-wide binding patterns of STAT3. From the peak distribution, we can begin to uncover novel downstream effectors of STAT3 signaling that are responsible for the observed phenotypes in our conditional knockout mouse model. A preliminary look at the ChIP-seq data reveals Wnt and Nrf2 signaling to be under the putative control of STAT3. In our further research, we endeavor to experimentally confirm the ChIP-seq data for STAT3 with RNA-seq experiments in the hopes of finding potential therapeutic targets for bone pathologies.
|
Page generated in 0.0968 seconds