• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 118
  • 58
  • 31
  • 10
  • 9
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 302
  • 126
  • 80
  • 74
  • 61
  • 55
  • 42
  • 27
  • 25
  • 24
  • 24
  • 23
  • 22
  • 21
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Natural and therapy-induced immune control of HIV-1

Yager, Nicole Leanne January 2011 (has links)
The human immunodeficiency virus (HIV)-specific cytotoxic T-lymphocyte (CTL) response is important in the control of HIV-1 infection. Due to the virus having a high rate of mutation, immune pressure can select for variants that are no longer recognised by CTLs to dominate the viral quasispecies. This is similar to how antiretroviral resistance emerges. HIV-1 is therefore adapting to both human leukocyte antigen (HLA)-restricted immune responses and antiretroviral therapy. This thesis initially focused on the natural CTL response to an HLA-B*51-restricted epitope in integrase. This HLA class I allele is associated with slow progression to AIDS; however, as no CTL-driven escape mutation has been fully defined within this integrase epitope, we cannot determine what contributes to the association of HLA-B*51 and natural control of infection. By longitudinally studying a cohort of early HIV-infected individuals, we observed the emergence of polymorphisms that abrogate a CTL response to this epitope. CTL escape may also prove to be the downfall of current immunotherapy strategies attempting to combat HIV infection. T cell receptors (TCRs) have been genetically modified to enhance their binding affinity to an HLA-A*02-peptide complex and transduced into CD8+ cells to create an HIV adoptive therapy. We demonstrate through in vitro selection pressure assays that escape from these cells may be a difficult task for the virus given that the TCR is able to recognise the majority of variants of this epitope. Antigen processing mutations may represent the only option for escape. How this may translate clinically will only be determined through in vivo studies, which must be meticulously monitored. Finally, when this high affinity TCR was fused to an anti-CD3 single chain variable fragment to create proteins capable of redirecting non-HIV-specific CTLs to HIV-infected cells, we found that the result was specific lysis. These proteins may supersede the use of TCR-transduced cells when used in synergy with antiretroviral therapy.
42

Studies on heteroaromatic schweinfurthin analogues

Kodet, John Gordon 01 May 2010 (has links)
Natural products are a rich source of lead compounds for treatment of cancer as well as other diseases. Researchers at the National Cancer Institute, as part of their continuing effort to discover anticancer agents from natural sources, created the 60 human tumor cell-line anticancer screen to test natural products for their potential against various types of cancer. Through this screening process a family of natural products called schweinfurthins was discovered to possess potent and differential activity. Of potentially great significance, the pattern of activity that the schweinfurthins displayed in the screen does not correlate with any currently used anticancer drug, indicating that the schweinfurthins likely act via a previously unknown mechanism or on a novel target. Our group has synthesized many of the natural schweinfurthins as well as numerous analogues in an effort to probe the pharmacophore and gain understanding of the key features that are important for potency as well as differential activity. During the course of these studies, it was discovered that the right-half of the molecule is most amenable for modifications. One potential modification to the schweinfurthins is to replace the resorcinol substructure seen in the right-half of the natural product with a heteroaromatic moiety such as a benzofuran or indole system. This change may produce analogues that are potentially more active, that contain motifs that are seen in many therapeutic drugs, and that have improved chemical stability relative to the natural products. With this goal in mind benzofuran and indole containing schweinfurthin analogues were synthesized. Once these compounds were prepared, it was found that such modifications were welltolerated, and in the case of the indole analogues activity in the 60 cell-line screen was equivalent to the corresponding natural product. In an effort to improve that activity, prenyl and geranyl side chains were added to the indole system, at both the C-2 and C-3 positions, to better match the structure of the natural schweinfurthins. In addition, analogues methylated selectively on the indole nitrogen or phenol were synthesized to improve stability. The impact of those modifications on the activity was tested, and potent compounds were found. The left-half of the schweinfurthins is prepared via a Lewis acid mediated cascade of a geranyl epoxide. The protecting group that is typically employed on the terminating phenol, a methoxymethyl ether or MOM group, is cleaved during the reaction. In the past preparation of an analogue that lacked a substituent at the C-5 position, it was found that the MOM cation released during the cyclization would participate in an electrophilic aromatic substitution reaction at the neighbouring position which resulted in the formation of a benzyl methyl ether. In order to probe the scope of this reaction and its potential utility in the synthesis of natural products, several geranyl epoxides with various "protecting groups" on the phenol were prepared and subjected to the cyclization conditions. These investigations have established that stabilization of the liberated cation determines the likelihood and regioselectivity of a tandem electrophilic aromatic substitution reaction.
43

Mistletoes and Thionins : as Selection Models in Natural Products Drug Discovery

Larsson, Sonny January 2007 (has links)
<p>The process of drug discovery from natural products starts with the selection of study object. In this project recent knowledge and methods are incorporated to investigate the process of such selection for pharmacognostic investigations. As the model and object of study mistletoes and their content of the small cytotoxic peptides thionins are chosen.</p><p>The thionins are compared in silico to other proposed plant innate defense peptides. Utilizing analysis of amino acid sequences and secondary structures, the thionins are shown to be one of eight distinct groups of cystein-rich plant polypeptides analysed. Common features of thionins are exploited in an investigation of isolation methods, where a simple acidic extraction is equally efficient to isolate thionins as the laborious methods hitherto used. </p><p>An effort to study the relationships of the order Santalales was done. To infer phylogenetic relationships from DNA sequences, we increased the taxon sampling for utilized genes and regions such as <i>rbcL</i>, <i>atpB</i> and ribosomal 18S and 26S rDNA sequences within the Santalales. Analysing these together with published sequences for other tricolpate taxa a position for Santalales as sister to caryophyllids and basal to asterids is implied. This indication is supported by chemical characters such as the presence of cyclopeptide alkaloids of a kind only known from Gentianales.</p><p>To validate the chemosystematic implications from thionin distribution extracts of mistletoes collected in Panama, Taiwan and Madagascar, and the relative <i>Osyris alba</i> (Santalaceae) collected in Spain, were screened with the established fluorescence microculture cytotoxicity assay using the thionin-sensitive human lymphoma cell-line U937GTB. Bioassay guided isolation concludes that the cytotoxic compounds in Loranthaceae may however constitute another group of peptides.</p><p>In conclusion this work shows that the incorporation of informatic techniques may aid prediction and decision making when planning pharmacognostic research.</p>
44

Measurement, inhibition, and killing mechanisms of cytotoxic granule serine proteases

Ewen, Catherine L 06 1900 (has links)
Natural killer (NK) cells and cytotoxic T lymphocytes (CTL) are critical for the protection of organisms against pathogens and cancer. The process by which these cells eliminate infected or transformed cells are through two basic mechanisms, receptor-mediated interactions, or delivery of contents from intracellular cytotoxic granules. Granules are comprised of perforin and a family of serine proteases, called granzymes. Upon entry into target cells, these proteins work together to initiate cellular death pathways. Previous and extensive biochemical studies had already established that granzyme B (GrB) was a powerful inducer of apoptosis, but sensitive assays to confirm its release from cytotoxic cells were lacking. We hypothesized that GrB release, measured by ELISPOT, directly assessed the lytic potential of antigen-specific cytotoxic cells. Indeed, data provided in this thesis established a strong correlation between GrB release and target cell lysis. Our results imply that GrB could be a promising tool to assess cell-mediated immunity during vaccine development. However, several other independent studies in grB-/- mice demonstrated that additional granzymes were capable of clearing viruses and tumorigenic cells. Granzyme H (GrH) is highly and constitutively expressed in human NK cells, and therefore, we hypothesized that it was also an effective cytotoxic molecule. Our experiments established that GrH-induced cell death by a mechanism distinct from those of GrB and Fas. We identified a GrH substrate, DFF45/ICAD, and showed that GrH induced mitochondrial damage through a Bid-independent mechanism. Furthermore, cell death was dependent on Bax and/or Bak, but independent of caspase activation. Hence, we have elucidated an alternative cytotoxic pathway that could be employed to eliminate target cells with immune evasion strategies targeted to GrB or Fas. Finally, control of serine proteases by endogenous inhibitors is important to numerous biological processes, including apoptosis. We hypothesized that as GrH displayed chymase activity, the serine protease inhibitor anti-chymotrypsin (ACT) would impair GrH function. Our data established that ACT effectively attenuated GrH cytotoxicity and prevented proteolysis of a GrH substrate. Collectively, this thesis describes a novel GrH inhibitor, provides a new tool to evaluate cell-mediated immunity, and provides evidence of an alternative mechanism of cytotoxicity.
45

Targeting cytotoxic species in amyloid diseases

Lindhagen Persson, Malin January 2012 (has links)
Amyloid diseases are a world-wide problem causing great human suffer and large economical costs. Although amyloid deposits, a common denominator in all amyloid disorders, are detrimental to the surrounding tissue, there is a poor correlation between total amyloid burden and clinical symptoms. Soluble oligomers are much more potent to exert a tissue damaging effect.  Alzheimer’s disease (AD) is strongly linked to self-assembly of the amyloid-β (Aβ) peptide. Antibodies selectively targeting cytotoxic Aβ-species are useful both for understanding oligomer formation and for their therapeutic abilities. We hypothesized that the effect of avidity would compensate for a low single site affinity and be enough to selectively target oligomers. To evaluate this hypothesis, we focused on the IgM isotype having ten antigen-binding sites. In accordance with the hypothesis, the IgM isotype effectively bound oligomeric Aβ also in presence of a vast excess of its monomeric counterpart, clearly illustrating the potentiating effect of avidity. As a continuation of this work, we have shown that the avidity effect from a bivalent binding is enough to induce oligomer specificity. This finding facilitates a direct application on the clinically more useful IgG isotype, where the binding properties now can be controlled in detail. The method is general and we have, using this technique, also designed oligomer specific antibodies targeting α-synuclein. Transthyretin (TTR) is an amyloidogenic protein involved in both hereditary and sporadic amyloidosis. The cytotoxicity of TTR is intriguing since studies have shown cytotoxic potential from oligomers, tetramers and even monomers. Elucidation of the molecular properties associated with TTR cytotoxicity is hence of interest. By preventing tetramer dissociation, TTR aggregation and TTR-induced cytotoxicity is abolished. Based on this rationale, a current therapeutic strategy is to stabilize the TTR tetramer with small molecules. The kinetic stability within the spectra of known TTR mutations spans more than three orders of magnitude. However, although the most stable mutants are inert, a poor correlation within the group of cytotoxic variants exists where the cytotoxic effect is not potentiated in proportion to their kinetic stability. Through analysis of a large spectra of TTR variants, our results indicate that TTR induced cytotoxicity requires an intermediate stability of the TTR molecule. The kinetic stability should be low enough to permit tetramer dissociation and the thermodynamic stability high enough to prevent instant aggregation and to allow formation of the cytotoxic fold.
46

Mistletoes and Thionins : as Selection Models in Natural Products Drug Discovery

Larsson, Sonny January 2007 (has links)
The process of drug discovery from natural products starts with the selection of study object. In this project recent knowledge and methods are incorporated to investigate the process of such selection for pharmacognostic investigations. As the model and object of study mistletoes and their content of the small cytotoxic peptides thionins are chosen. The thionins are compared in silico to other proposed plant innate defense peptides. Utilizing analysis of amino acid sequences and secondary structures, the thionins are shown to be one of eight distinct groups of cystein-rich plant polypeptides analysed. Common features of thionins are exploited in an investigation of isolation methods, where a simple acidic extraction is equally efficient to isolate thionins as the laborious methods hitherto used. An effort to study the relationships of the order Santalales was done. To infer phylogenetic relationships from DNA sequences, we increased the taxon sampling for utilized genes and regions such as rbcL, atpB and ribosomal 18S and 26S rDNA sequences within the Santalales. Analysing these together with published sequences for other tricolpate taxa a position for Santalales as sister to caryophyllids and basal to asterids is implied. This indication is supported by chemical characters such as the presence of cyclopeptide alkaloids of a kind only known from Gentianales. To validate the chemosystematic implications from thionin distribution extracts of mistletoes collected in Panama, Taiwan and Madagascar, and the relative Osyris alba (Santalaceae) collected in Spain, were screened with the established fluorescence microculture cytotoxicity assay using the thionin-sensitive human lymphoma cell-line U937GTB. Bioassay guided isolation concludes that the cytotoxic compounds in Loranthaceae may however constitute another group of peptides. In conclusion this work shows that the incorporation of informatic techniques may aid prediction and decision making when planning pharmacognostic research.
47

Studies of Cytotoxic Compounds of Natural Origin and their Mechanisms of Action

Felth, Jenny January 2011 (has links)
Cancer incidence is increasing and novel anticancer drugs with new mechanisms of action are essential for future chemotherapeutic treatment. Natural products have historically played an important role in the development of anti-cancer drugs and have potential to do so also in the future. In this thesis two classes of natural products are identified as possible drug lead candidates, and the mechanisms of their action are elucidated. Initially, in a screening of a compound library for cytotoxic effects in colon cancer cells, natural products with potent activity were identified. Based on their potency, and on previously reported activities in cancer cells, two main groups of compounds, cardiac glycosides (CGs) and gambogic acid (GA) analogues, were selected for further in-depth studies. The concentration-dependent cytotoxicity was confirmed in cell lines of different origin. Cardiac glycosides were mainly evaluated for their activity in colon cancer cells and in leukemic cells, whereas the GA analogues were studied using a resistance-based panel of ten human cancer cell lines. Using activity profiles and the ChemGPS-NP model, the compounds were compared, structurally and mechanistically, to standard chemotherapeutic drugs. The results from these analyses suggested that the CGs and the GA analogues act by mechanisms different from those of antimetabolites, alkylating agents, topoisomerase I and II inhibitors, or tubulin-active agents. By analysis of drug-induced gene expression, one GA analogue, dihydro GA, was identified as a possible inhibitor of the ubiquitin-proteasome system (UPS), and the CGs showed similarities to protein synthesis inhibitors. Starting from these hypotheses, we further investigated the mechanisms of actions on a molecular level. The results showed that GA and dihydro GA act as inhibitors of the 20S proteasome chymotrypsin activity, leading to accumulation of ubiquitinated proteins. The CGs were confirmed to inhibit protein synthesis in colon cancer cell lines. However, interestingly, in leukemia cell lines, it seemed that the CGs act through a different, yet unexplored, mechanism of action. The leukemic cells (pre-B and T-ALL) were particularly susceptible to the cytotoxic effects of CGs, including at concentrations that may be achievable in the clinic.
48

An evaluation of the efficiency of lymphocytic choriomeningitis virus - nucleoprotein cross priming in vivo

Dunbar, Erin 11 July 2007 (has links)
During viral infections, CD8+ T cells only respond to a select few epitopes derived from the respective foreign pathogen. These epitopes can be organized into a hierarchy, based on their ability to induce T cell priming. Such phenomenon is known as immunodominance. Cytotoxic T cells can be primed through the direct pathway, or the cross-priming pathway. The latter involves exogenously derived viral epitope presentation by uninfected professional antigen presenting cells. It has been previously reported that Lymphocytic Choriomeningitis nucleoprotein expressed in HEK cells (HEK-NP) could be cross presented to CD8+ T cells. In these studies we have used this same HEK-NP model to study the effects of LCMV-NP cross priming on the LCMV immunodominance hierarchy following viral challenge. Our results provide strong evidence that cross priming is an efficient route with which to induce cell-mediated immunity. We also highlight a regulatory role for cross priming in immunodominance by showing that a single dose of HEK-NP can completely shift the immunodominance hierarchy of a typical LCMV infection. Furthermore, we see that the induction of LCMV-NP cross priming boosts anti-viral immunity to subsequent LCMV infections. This work provides strong support for the physiological role that cross priming plays in normal cell-mediated immune responses. It may also provide relevant information to the realm of immunotherapy. / Thesis (Master, Microbiology & Immunology) -- Queen's University, 2007-07-10 14:33:18.115
49

Measurement, inhibition, and killing mechanisms of cytotoxic granule serine proteases

Ewen, Catherine L Unknown Date
No description available.
50

Studies in the Chemistry of Marine Natural Products

Hickford, Sarah Jane Herbison January 2007 (has links)
Compounds from the marine environment exhibit a wide variety of biological activities, and thus hold much promise as potential drugs. The halichondrins, isolated from the Kaikoura sponge Lissodendoryx sp. are no exception to this, demonstrating potent anticancer activity. Novel cytotoxic compounds have also been isolated from the Chatham Rise sponge Lamellomorpha strongylata. Knowledge of the cellular origins of such compounds is desirable, in order to establish if the sponge or associated micro-organisms are producing the compounds of interest. Siderophores are also important molecules, which are produced on demand by bacteria in order to obtain sufficient iron necessary for their growth. Knowledge of the biosynthesis of these compounds has potential for the control of undesirable bacteria, such as the anthrax-causing pathogen Bacillus anthracis. Cell separation studies have been carried out on Lamellomorpha strongylata, locating a swinholide in sponge-associated filamentous bacteria and theonellapeptolides in sponge-associated unicellular bacteria. A microscopic analysis of dissociated cells from Lissodendoryx sp. was also undertaken. The structures of four new halichondrins (3.13 - 3.16), isolated from Lissodendoryx sp., have been determined from spectral data. All of these compounds are very similar to known B series halichondrins, with differences occurring only beyond carbon 44. As biological activity has been shown to be derived from the portion of the molecule between carbons 1 and 35, they all retain good activity in the P388 assay as expected. A new siderophore, petrobactin sulfonate (4.2), was characterised, along with three cyclic imide siderophore derivatives (4.3 - 4.5). Petrobactin sulfonate is the first marine siderophore containing a sulfonated 3,4-dihydroxy aromatic ring. The structures were elucidated from spectral data, resulting in a revision of the NMR assignments of petrobactin.

Page generated in 0.041 seconds