• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 422
  • 301
  • 80
  • 31
  • 25
  • 14
  • 11
  • 10
  • 10
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • Tagged with
  • 1041
  • 354
  • 184
  • 128
  • 105
  • 100
  • 77
  • 72
  • 68
  • 64
  • 60
  • 56
  • 55
  • 55
  • 53
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
251

Caractérisation des cellules natural killer dans la polyglobulie de Vaquez et dans la leucémie aigüe myéloïde / Characterization of Natural Killer Cells in Polycythemia Vera and in Acute Myeloid Leukemia

Baier, Céline 01 December 2014 (has links)
Les dernières avancées dans les traitements des hémopathies aboutissent à un meilleurs taux de rémission complète ainsi qu' à de meilleurs taux de survie après traitement. Cependant les risques de rechutes restent élevés. Notre projet s'inscrit dans la compréhension du rôle des cellules NK dans l'évolution de ce type de pathologies. Dans une première partie nous nous sommes intéressés à la polyglobulie de Vaquez. Cette pathologie présente une évolution lente et progressive, et elle est caractérisée par une mutation de JAK2 présente dans la lignée myéloïde chez plus de 95% des patients. Nous avons cherché à détecter la mutation dans les cellules NK de patients, puis, pour savoir si la mutation avait un effet sur les NK, nous avons exploré leurs fonctions in vitro. Nos résultats ont montré que, bien que la mutation soit présente dans les cellules NK, elle ne semble pas avoir d'impact sur les fonctions des cellules NK que nous avons pu tester. Nous en avons conclu que l'évolution de la polyglobulie de Vaquez en leucémie n'était peut-être pas due à une perte de fonction des NK mais plutôt à leur inhibition par l'environnement cellulaire.Dans une deuxième partie nous avons étudié la régulation des natural cytotoxicity receptors dans la leucémie aiguë myéloïde. D'apres des travaux antérieurs nous avons émis l'hypothèse que l'expression des trois NCR aurait une régulation commune s'effectuant au niveau de transcription de leurs gènes. Nos recherches bio-informatiques ainsi que notre expérimentation d'immunoprécipitation de la chromatine (Chip) montrent que le facteur de transcription ETS-1 semble être impliqué dans la régulation commune aux trois NCR. / The latest advances in blood disorders treatments lead to a better complete remission rate and a better survival rate after treatment. However, the risk of relapse remains high. Our project is included in the understanding of NK cells role in the development of these diseases.In a first part, we focused on polycythemia Vera for several reasons: the pathology has a slowly progressive disease, and it is characterized by the presence of JAK2 mutation for > 95% patients. We wanted to know if this mutation was found in NK cells from PV patients and what effects the mutation had on NK cells functions. Our results have shown that although the mutation was found in NK cells, it appears to have no impact on NK cells functions. We conclude that the evolution of PV to leukemia is not due to a loss of NK cell functions but to their inhibition by cellular environment.In a second part, we investigated the regulation of natural cytotoxicity receptors in acute myeloid leukemia because previous works have shown that NCR are weakly expressed in AML patients, that this down-regulation is acquired during evolution of AML and reversible after complete remission, ant that NCR weak expression is related to poor prognosis. We supposed that the expression of the three NCR has a common regulation at genes transcription level. Our bioinformatic researches and our experiment of chromatin immunoprecipitation show that ETS-1 transcription factor is a good candidate involved in the common regulation of the three NCR.
252

Synthesis and antimalarial activity screening of artemisinin-acridine hybrids / Juan Paul Joubert

Joubert, Juan Paul January 2013 (has links)
Malaria endemic areas not only pose a public health threat, but affects 3.3 billion people worldwide. In 2011, estimated malaria related deaths amounted to 660 000 out of 219 million reported cases, with 81% of these and 91% of malaria related mortality occurred in the African region. Those most affected were pregnant women, children under the age of five and immunocompromised individuals. Malaria is the fifth deadliest disease worldwide and accounts for the second highest death rate in Africa, following HIV/Aids. To combat this parasitic infection of antiquity, the ideal malaria pharmacotherapy would be a cost effective and easily obtainable monotherapy. The malaria parasite, however, has an intrinsic ability to develop drug resistance through various mechanisms. Widespread resistance towards antimalarial drugs has rendered traditionally used drugs therapeutically ineffective, hence accentuating the efficacy of the artemisinins as first line treatment option for uncomplicated Plasmodium falciparum (P. falciparum). A devastating reality of the challenging battle against malaria is the confirmed prolonged parasitic clearance times of the artemisinins, despite adequate drug exposure, which emphasises the urgent need for identifying and developing new, effective and safe therapies. During this study, 9-aminoacridines and artemisinin-acridine hybrids were successfully synthesised through nucleophillic substitution and their chemical structures confirmed by means of nuclear magnetic resonance spectroscopy (NMR), high resolution mass spectroscopy (HRMS) and infrared spectroscopy (IR). The hybrid compounds were synthesised through microwave assisted radiation, by covalently linking the artemisinin- and amino-functionalised acridine pharmacophores by means of a liable aminoethyl ether chain. The target compounds were screened in vitro for antimalarial activity against both the chloroquine sensitive (NF54) and chloroquine resistant (Dd2) strains of P. falciparum. Their cytotoxicities were assessed against various mammalian cells of different origins, viz. the Chinese hamster ovarian cells (CHO) from animal origin, and from human origin, hepatocellular- (HepG2), neuroblastoma- (SH-SY5Y) and cervical cancer (HeLa) cells. The synthesised hybrids exhibited antimalarial activity against both Plasmodium strains. Compound 7, featuring an ethylenediamine moiety in the linker, was the most active hybrid, with 50% inhibitory concentration (IC50) values of 2.6 nM and 35.3 nM against the NF54 and Dd2 strains, respectively. It had gametocytocidal activity against the NF54 strain, comparable to dihydroartemisinin (DHA) and artesunate (AS) and it is significantly more potent than chloroquine (CQ), whilst possessing a resistance index value of 14, indicative of a significant loss of activity against the CQ resistant strain. Contrary, the promising hybrid 10, containing a 2-methylpiperazine linker, had gametocytocidal activity, comparable to CQ and was found to be six-fold more potent than CQ against the Dd2 strain, with a resistance index (RI) value of 2, whilst it further showed highly selective action towards the parasitic cells. Compound 10 was also found to possess anticancer activity against the HeLa cell line, comparable to DHA and AS, but fivefold higher than that of CQ, with the same levels of hepatotoxicity and neurotoxicity. The artemisinin-acridine hybrids displayed superior antimalarial activity, compared to the derived 9-aminoacridines against both the Plasmodium strains. They, however, did not have the ability to overcome resistance, reduce the toxicity of acridine, nor induce synergistic activity. The hybrids, indeed displayed promising anticancer activity against HeLa cells. It is anticipated that these compounds may stand as drug candidates for further investigation in the search for new anti-cervical cancer drugs, rather than as antimalarials. / MSc (Pharmaceutical Chemistry), North-West University, Potchefstroom Campus, 2014
253

Potential pathogenicity of heterotrophic plate count bacteria isolated from untreated drinking water / Rachel Magrietha Petronella Prinsloo

Prinsloo, Rachel Magrietha Petronella January 2014 (has links)
Water is considered the most vital resource on earth and its quality is deteriorating. Not all residents living in South Africa‘s rural areas have access to treated drinking water, and use water from rivers, dams, and wells. The quality of these resources is unknown, as well as the effects of the bacteria in the water on human health. The heterotrophic plate count (HPC) method is a globally used test to evaluate microbial water quality. According to South African water quality guidelines, water of good quality may not contain more than a 1 000 coliforming units (CFU)/mℓ. There is mounting evidence that HPC bacteria may be hazardous to humans with compromised, underdeveloped, and weakened immune systems. In this study the pathogenic potential of HPC bacteria was investigated. Samples were collected from boreholes in the North West Province and HPCs were enumerated with a culture-based method. Standard physico-chemical parameters were measured for the water. Different HPC bacteria were isolated and purified and tested for α- or β-haemolysis, as well as the production of extracellular enzymes such as DNase, proteinase, lecithinase, chondroitinase, hyaluronidase and lipase, as these are pathogenic characteristics. The isolates were identified with 16S rRNA gene sequencing. The model for the human intestine, Hutu-80 cells, were exposed to the potentially pathogenic HPC isolates to determine their effects on the viability of the human cells. The isolates were also exposed to different dilutions of simulated gastric fluid (SGF) to evaluate its effect on the viability of bacteria. Antibiotic resistant potential of each isolate was determined by the Kirby-Bauer disk diffusion method. Three borehole samples did not comply with the physico-chemical guidelines. Half of the samples exceeded the microbial water quality guideline and the greatest CFU was 292 350 CFU/mℓ. 27% of the isolate HPC bacteria were α- or β- haemolytic. Subsequent analysis revealed the production of: DNase in 72%, proteinase in 40%, lipase and lecithinase in 29%, hyaluronidase in 25% and least produced was chondroitinase in 25%. The HPC isolates identified included: Alcaligenes faecalis, Aeromonas hydrophila and A. taiwanesis, Bacillus sp., Bacillus thuringiensis, Bacillus subtilis, Bacillus pumilus, Brevibacillus sp., Bacillus cereus and Pseudomonas sp. All the isolates, except Alcaligenes faecalis, were toxic to the human intestinal cells to varying degrees. Seven isolates survived exposure to the most diluted SGF and of these, four isolates also survived the intermediate dilution but, only one survived the highest SGF concentration. Some isolates were resistant to selected antibiotics, but none to neomycin and vancomycin. Amoxillin and oxytetracycline were the least effective of the antibiotics tested. A pathogen score was calculated for each isolate based on the results of this study. Bacillus cereus had the highest pathogen index with declining pathogenicity as follows: Alcaligenes faecalis > B. thuringiensis > Bacillus pumilus > Pseudomonas sp. > Brevibacillus > Aeromonas taiwanesis > Aeromonas hydrophila > Bacillus subtilis > Bacillus sp. The results of this study prove that standard water quality tests such as the physico-chemical and the HPC methods are insufficient to provide protection against the effects of certain pathogenic HPC bacteria. / MSc (Environmental Sciences), North-West University, Potchefstroom Campus, 2014
254

Synthesis and antimalarial activity screening of artemisinin-acridine hybrids / Juan Paul Joubert

Joubert, Juan Paul January 2013 (has links)
Malaria endemic areas not only pose a public health threat, but affects 3.3 billion people worldwide. In 2011, estimated malaria related deaths amounted to 660 000 out of 219 million reported cases, with 81% of these and 91% of malaria related mortality occurred in the African region. Those most affected were pregnant women, children under the age of five and immunocompromised individuals. Malaria is the fifth deadliest disease worldwide and accounts for the second highest death rate in Africa, following HIV/Aids. To combat this parasitic infection of antiquity, the ideal malaria pharmacotherapy would be a cost effective and easily obtainable monotherapy. The malaria parasite, however, has an intrinsic ability to develop drug resistance through various mechanisms. Widespread resistance towards antimalarial drugs has rendered traditionally used drugs therapeutically ineffective, hence accentuating the efficacy of the artemisinins as first line treatment option for uncomplicated Plasmodium falciparum (P. falciparum). A devastating reality of the challenging battle against malaria is the confirmed prolonged parasitic clearance times of the artemisinins, despite adequate drug exposure, which emphasises the urgent need for identifying and developing new, effective and safe therapies. During this study, 9-aminoacridines and artemisinin-acridine hybrids were successfully synthesised through nucleophillic substitution and their chemical structures confirmed by means of nuclear magnetic resonance spectroscopy (NMR), high resolution mass spectroscopy (HRMS) and infrared spectroscopy (IR). The hybrid compounds were synthesised through microwave assisted radiation, by covalently linking the artemisinin- and amino-functionalised acridine pharmacophores by means of a liable aminoethyl ether chain. The target compounds were screened in vitro for antimalarial activity against both the chloroquine sensitive (NF54) and chloroquine resistant (Dd2) strains of P. falciparum. Their cytotoxicities were assessed against various mammalian cells of different origins, viz. the Chinese hamster ovarian cells (CHO) from animal origin, and from human origin, hepatocellular- (HepG2), neuroblastoma- (SH-SY5Y) and cervical cancer (HeLa) cells. The synthesised hybrids exhibited antimalarial activity against both Plasmodium strains. Compound 7, featuring an ethylenediamine moiety in the linker, was the most active hybrid, with 50% inhibitory concentration (IC50) values of 2.6 nM and 35.3 nM against the NF54 and Dd2 strains, respectively. It had gametocytocidal activity against the NF54 strain, comparable to dihydroartemisinin (DHA) and artesunate (AS) and it is significantly more potent than chloroquine (CQ), whilst possessing a resistance index value of 14, indicative of a significant loss of activity against the CQ resistant strain. Contrary, the promising hybrid 10, containing a 2-methylpiperazine linker, had gametocytocidal activity, comparable to CQ and was found to be six-fold more potent than CQ against the Dd2 strain, with a resistance index (RI) value of 2, whilst it further showed highly selective action towards the parasitic cells. Compound 10 was also found to possess anticancer activity against the HeLa cell line, comparable to DHA and AS, but fivefold higher than that of CQ, with the same levels of hepatotoxicity and neurotoxicity. The artemisinin-acridine hybrids displayed superior antimalarial activity, compared to the derived 9-aminoacridines against both the Plasmodium strains. They, however, did not have the ability to overcome resistance, reduce the toxicity of acridine, nor induce synergistic activity. The hybrids, indeed displayed promising anticancer activity against HeLa cells. It is anticipated that these compounds may stand as drug candidates for further investigation in the search for new anti-cervical cancer drugs, rather than as antimalarials. / MSc (Pharmaceutical Chemistry), North-West University, Potchefstroom Campus, 2014
255

Potential pathogenicity of heterotrophic plate count bacteria isolated from untreated drinking water / Rachel Magrietha Petronella Prinsloo

Prinsloo, Rachel Magrietha Petronella January 2014 (has links)
Water is considered the most vital resource on earth and its quality is deteriorating. Not all residents living in South Africa‘s rural areas have access to treated drinking water, and use water from rivers, dams, and wells. The quality of these resources is unknown, as well as the effects of the bacteria in the water on human health. The heterotrophic plate count (HPC) method is a globally used test to evaluate microbial water quality. According to South African water quality guidelines, water of good quality may not contain more than a 1 000 coliforming units (CFU)/mℓ. There is mounting evidence that HPC bacteria may be hazardous to humans with compromised, underdeveloped, and weakened immune systems. In this study the pathogenic potential of HPC bacteria was investigated. Samples were collected from boreholes in the North West Province and HPCs were enumerated with a culture-based method. Standard physico-chemical parameters were measured for the water. Different HPC bacteria were isolated and purified and tested for α- or β-haemolysis, as well as the production of extracellular enzymes such as DNase, proteinase, lecithinase, chondroitinase, hyaluronidase and lipase, as these are pathogenic characteristics. The isolates were identified with 16S rRNA gene sequencing. The model for the human intestine, Hutu-80 cells, were exposed to the potentially pathogenic HPC isolates to determine their effects on the viability of the human cells. The isolates were also exposed to different dilutions of simulated gastric fluid (SGF) to evaluate its effect on the viability of bacteria. Antibiotic resistant potential of each isolate was determined by the Kirby-Bauer disk diffusion method. Three borehole samples did not comply with the physico-chemical guidelines. Half of the samples exceeded the microbial water quality guideline and the greatest CFU was 292 350 CFU/mℓ. 27% of the isolate HPC bacteria were α- or β- haemolytic. Subsequent analysis revealed the production of: DNase in 72%, proteinase in 40%, lipase and lecithinase in 29%, hyaluronidase in 25% and least produced was chondroitinase in 25%. The HPC isolates identified included: Alcaligenes faecalis, Aeromonas hydrophila and A. taiwanesis, Bacillus sp., Bacillus thuringiensis, Bacillus subtilis, Bacillus pumilus, Brevibacillus sp., Bacillus cereus and Pseudomonas sp. All the isolates, except Alcaligenes faecalis, were toxic to the human intestinal cells to varying degrees. Seven isolates survived exposure to the most diluted SGF and of these, four isolates also survived the intermediate dilution but, only one survived the highest SGF concentration. Some isolates were resistant to selected antibiotics, but none to neomycin and vancomycin. Amoxillin and oxytetracycline were the least effective of the antibiotics tested. A pathogen score was calculated for each isolate based on the results of this study. Bacillus cereus had the highest pathogen index with declining pathogenicity as follows: Alcaligenes faecalis > B. thuringiensis > Bacillus pumilus > Pseudomonas sp. > Brevibacillus > Aeromonas taiwanesis > Aeromonas hydrophila > Bacillus subtilis > Bacillus sp. The results of this study prove that standard water quality tests such as the physico-chemical and the HPC methods are insufficient to provide protection against the effects of certain pathogenic HPC bacteria. / MSc (Environmental Sciences), North-West University, Potchefstroom Campus, 2014
256

Cytotoxic Activity of Sphingosine-1-Phosphate against Human Triple-negative/ Basal-like Breast Cancer

2016 January 1900 (has links)
Breast cancer is one of the most common malignancy diagnosed in women and is the primary cause of cancer-related deaths in women worldwide. It is a heterogeneous group of diseases that have a different response, prognosis, and clinical outcomes. Estrogen, progesterone and HER2 negative breast cancer, known as triple negative breast cancer (TNBC), does not respond to hormonal therapy. Basal-like breast cancer (BLBC) has shorter overall survival rate among other subtypes. Tumors sharing both TNBC and BLBC are considered less responsive to currently available treatment. Chemoresistance to treatment has been a challenge in cancer biology and force investigation toward developing new targeted therapies, which selectively target specific subtypes. Sphingolipid metabolites have an important physiological role in determining cell fate. Sphingolipid metabolites, ceramide, sphingosine, and sphingosine-1-phosphate (S1P), are implicated in cancer. S1P exerts its functions via extracellular and intracellular targets. S1P synthesized inside the cell is exported outside and binds to G-protein coupled receptors, the sphingosine-1-phosphate receptors 1-5 (S1PR1-5). Although the intracellular function is not well defined, its suggested intracellular S1P promotes cell apoptosis. The S1P pathway has received great attention recently due its function in cell survival and death. This effect was reported to be concentration dependent. In this research, I focused on S1P effect on nine TNBC/BLBC cell lines. I examined the in-vitro effects of S1P on apoptosis, proliferation, and cytotoxicity in triple negative/ basal-like breast cancer cell lines. Moreover, I studied the co-administration of S1P with currently used chemotherapeutic agents in these cell lines. Data show that S1P can selectively induce cell death in TNBC/BLBC cell lines at a specific concentration. In this research, I found that the mechanism of cell death following treatment with different S1P concentrations was mainly due to apoptosis. Results show that S1P leads to cell shrinkage, rounding and detachment in the nine TNBC/BLBC cell lines. S1P combination with doxorubicin and docetaxel at different concentrations shows no beneficial effect of the combination compared to the chemotherapeuitc agent alone. In some cell lines, the combination showed a protective effect. Further studies are required to determine the mechanism by which S1P induces cell apoptosis, inhibits cell growth, and demonstrates lack of responsiveness in combination studies.
257

The relationship between HIF-1α and autophagy activity in the hypoxic environment of breast cancer

Mills, Justin 03 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2013. / ENGLISH ABSTRACT: Introduction: Among the cancers that afflict females world-wide, neoplastic disease of breast tissue is the most frequently diagnosed form and the leading cause of cancer-related death. Conventional treatment entails the use of doxorubicin, an anticancer agent belonging to the anthracycline family of chemotherapeutic drugs. Cancer cells are becoming increasingly resistant to doxorubicin therapy. The existence of hypoxic zones, which is a common feature of solid tumours, has been shown to promote the selection of therapy resistant clones in proliferating cancer cells. By modifying cellular homeostasis, neoplastic cells are capable of tolerating the hypoxic insult and thriving within the hostile microenvironment of the tumour. This adaptation is known as ‘the hypoxic response’ and is mediated through the action of the transcriptional regulator, HIF-1. Its expression in cancer tissue has been associated with a dismal prognosis as it promotes the degree of malignancy to an advanced stage. Hypothesis & Aims: We hypothesized that the targeting of HIF-1α would circumvent the ‘protective’ hypoxic response conferred upon breast cancer and improve the cytotoxicity of doxorubicin treatment. In this study, the first aim was to identify the hypoxic conditions at which the MCF-7 breast cancer cell line manifests a doxorubicin-resistant phenotype. This was followed by examination of the molecular pathways contributing to the hypoxic resistance by elucidating the potential relationship with the hypoxic regulator HIF-1α. Once the involvement of HIF-1α was established, the next aim was to evaluate whether the attenuation of HIF-1α would terminate the resistant phenotype and sensitize the neoplastic MCF-7 cells to doxorubicin treatment. Finally, the reproducibility of the in vitro experiment and efficacy of treatments within an animal model was evaluated. 2-Methoxyestradiol is a naturally occurring metabolite originating from 17β-estradiol. It has recently been exploited as an anticancer agent due to its anti-proliferative and anti-angiogenic properties. Among its various mechanisms of action, this compound has been shown to inhibit the expression of HIF-1α. It is for this reason that this study employed 2-methoxyestradiol in the adjuvant therapeutic treatment, along with doxorubicin. Methods: The in vitro experimental model employed the use of the breast adenocarcinoma estrogen receptor (ER-positive cell line, MCF-7. These neoplastic cells were propagated under standard culture conditions until reaching ~70-80% confluency, after which treatment commenced. The treatment regime comprised a 12 hour exposure to the doxorubicin (1 μM) chemotherapeutic agent, either alone or in combination with HIF-1α inhibitors, 2-methoxyestradiol (10 μM) or siRNA duplex (400 nM), with parallel incubations under normoxic (21%) and hypoxic (~0.1%) conditions. To serve as a positive control for HIF-1α expression, cells were treated with CoCl2 (100 μM). Molecular techniques employed included the Caspase-Glo® 3/7 Assay, western blotting, and the bioreductive MTT Assay. Mitochondrial integrity was assessed by live cell imaging/fluorescent microscopy. Cellular viability was monitored at all times. The experiment was then translated into a pre-clinical in vivo model where C57BL/6 mice bearing E0771 xenografts (4 week growth) were allocated into the following treatment groups: (1) control (2) doxorubicin (5 mg.kg-1), (3) 2-methoxyestradiol (45 mg.kg-1), and (4) the combination of the two previously mentioned groups. Body weight and the rate of tumour growth were monitored throughout the experiment. Results: Treatment with CoCl2 effectively stabilized HIF-1α under normoxic conditions. 2-Methoxyestradiol was capable of attenuating HIF-1α expression under both normoxia and hypoxia as compared with siRNA transfection, which was only effective under normoxia. HIF-1α stabilization was accompanied by an increase in autophagy along with the morphological transformation of mitochondria from an elongated network to shorter disc-like forms. On the other hand, HIF-1α attenuation caused an induction in the expression of the apoptotic markers, cleaved caspase 3 and cleaved PARP, as well as the restoration of the normoxic morphology. The exposure of MCF-7 cells to 1 μM doxorubicin for 12 hours produced a differential effect in the bioreductive MTT assay between normoxic and hypoxic conditions (42.97 ± 3.095% vs. normoxic dox, p<0.01), while stimulating the apoptotic and autophagic pathways. Compared to the control, a significant expression of phospho-AMPK became evident at 21% O2, while the levels remained stable at ~0.1% O2 after doxorubicin exposure. Furthermore, chemotherapeutic treatment caused the morphology of the mitochondria to appear dot-like. Although the combination of the two drugs removed the differential effect witnessed in the MTT assay, there was no significant change when compared to doxorubicin. Levels of apoptotic cell death decreased under both oxygen conditions. While HIF-1α and autophagy decreased under normoxia, they remained elevated under hypoxia. In the in vivo component of the study, the administration of doxorubicin and 2-methoxyestradiol, alone or in combination, did not affect the rate of tumour growth or induce systematic toxicity in any of the experimental mice. When drugs were administered separately, a decrease in apoptosis along with a concomitant increase in autophagy and p-AMPK expression became noticeable while neither treatment had any significant effect on the expression of HIF-1α. Adjuvant administration, however, was capable of attenuating HIF-1α along with autophagy. Discussion: By inducing (CoCl2) and inhibiting (2-methoxyestradiol; siRNA duplex) HIF-1α, it was established that the autophagic pathway in the in vitro experimental setting of this study was dependent on the expression of HIF-1α. The bioreductive MTT assay measures the metabolic state of a cell, which is an indirect indication of cellular viability. Based on this, hypoxia was shown to confer survival to neoplastic MCF-7 cells based on the differential effect witnessed after doxorubicin treatment. Apart from the induction of apoptosis and its associated mitochondrial fragmentation, the chemotherapeutic drug increased the activation of the metabolic sensor, AMPK, which upregulated autophagy during normoxia. While this autophagic process may assist in the killing mechanism, we speculate that the autophagy upregulated under hypoxia may be responsible for the survival effect and is most likely dependent on HIF-1α. In contrast to eliciting a synergistic cytotoxic effect, the combination of doxorubicin with 2-methoxyestradiol produced an antagonistic effect on cellular viability instead. We propose that under normoxia, the combined treatment may stimulate the MCF-7 neoplastic cells to enter a state of growth arrest, or senescence, since the results indicate that the decrease in HIF-1α-dependent autophagy did not significantly affect cellular viability. Under hypoxia, despite the incorporation of the pharmacological HIF-1α inhibitor (2-methoxyestradiol), the expression levels of HIF-1α remained unaffected. We speculate that this could be the result of a potentiated stabilization of HIF-1α caused by the build-up of ROS and TCA intermediates which may be the outcome of mitochondrial dysfunction inflicted upon adjuvant therapy under hypoxia. Furthermore, it is also likely that the slight mitogenic effect observed within the MTT assay may be caused by the conversion of 2-methoxyestradiol to a chemically-reactive estrogen derivative, possibly by the action of doxorubicin, and the fact that an ER-positive cancer cell line was employed in this study. With regards to the in vivo experimental model, we speculated that the failure of the molecular changes to manipulate the growth of the tumour could have been the result of an ineffective time- and/or dose regime. Conclusion: We therefore reject our hypothesis based on the fact that an antagonistic rather than synergistic effect was witnessed when the tumorigenic MCF-7 cell line was treated with adjuvant therapy. The results warrant the need for extensive testing on the pharmacodynamics of 2-methoxyestradiol, and more informative techniques to compliment the study. / AFRIKAANSE OPSOMMING: Inleiding: Borskanker is die mees algemeen gediagnoseerde kanker asook die hoof oorsaak van kanker-verwante sterftes in vrouens wêreldwyd. Konvensionele behandeling behels die toediening van doxorubicin, ‘n anti-kankermiddel wat aan die antrasiklien-familie van chemoterapeutiese middels behoort. Kankerselle begin egter toenemend weerstandbiedend raak teen doxorubicin behandeling. Daar is al bewys dat die voorkoms van hipoksiese sones, wat ‘n algemene eienskap van soliede tumore is, die seleksie vir weerstandbiedende klone van prolifererende kankerselle, veroorsaak. Neoplastiese selle kan hierdie hipoksiese toestande weerstaan en in hierdie ongunstige mikro-omgewing floreer deur sellulêre homeostase te modifiseer. Hierdie aanpassing staan bekend as die ‘hipoksiese respons’ en word bemiddel deur die aksies van die transkripsiefaktor reguleerder, HIF-1. Die verhoogde uitdrukking van HIF-1 in kankerweefsel word oor die algemeen geassosieer met ‘n swak prognose omdat dit die maligniteit vehoog. Hipotese en Doelwitte: Die hipotese van hierdie studie behels dus die volgende: Deur HIF-1α te inhibeer, sal die ‘beskermende’ hipoksiese respons wat in borskankerselle voorkom omseil kan word en sodoende die sitotoksisiteit van doxorubicin terapie verhoog. Die eerste doelwit van hierdie studie was dus om die hipoksiese kondisies te identifiseer waar MCF-7 selle ‘n doxorubicin-weerstandbiedende fenotipe vertoon. Daarna is die molekulêre paaie wat bydrae tot hierdie hipoksiese weerstand ondersoek asook hul moontlike verwantskap met die hipoksiese reguleerder, HIF-1α. Nadat die rol van HIF-1α bevestig is, was die volgende doelwit om te bepaal of die inhibisie van HIF-1α die weerstandbiedende fenotipe sal onderdruk en neoplastiese MCF-7 selle sal sensitiseer vir doxorubicin behandeling. Laastens is die herhaalbaarheid en effektiwiteit van behandeling in die in vitro eksperimente ook in ‘n diermodel getoets. 2-Methoxyestradiol is ‘n metaboliet van 17β-estradiol wat natuurlik in die liggaam voorkom. Dit is ook onlangs as ‘n anti-kanker middel geïdentifiseer as gevolg van die anti-verdelende en anti-angiogeniese eienskappe. Een van die eienskappe van 2-methoxyestradiol is dat dit ook die uitdrukking van HIF-1α kan onderdruk. Dit is dan ook vir hierdie rede dat 2-methoxyestradiol in hierdie studie as bykomende terapie saam met doxorubicin gebruik is. Metodes: Die in vitro eksperimentele model behels die gebruik van ‘n borsadenokarsinoom, estrogeenreseptor (ER)- positiewe sellyn, MCF-7. Hierdie neoplastiese selle is onder standaard weefselkultuur omstandighede gekweek totdat konfluensie van ~70-80% bereik is, waarna behandeling begin het. Die behandelingsprosedure behels ‘n 12 uur blootstelling aan doxorubicin (1 µM) chemoterapeutiese middel alleen of in kombinasie met die HIF-1α inhibitore, 2-methoxyestradiol (10 µM) of siRNA duplex (400 nM) in normoksiese (21% O2) en hipoksiese (~0.1% O2) toestande. Die selle is ook met CoCl2 behandel wat gedien het as ‘n positiewe kontrole vir HIF-1α uitdrukking. Molekulêre tegnieke wat tydens hierdie studie gebruik is, sluit die “Caspase-Glo® 3/7” bepaling in, asook die westelike kladtegniek en die MTT bepaling. Mitochondriale integriteit is bepaal deur middel van lewende sel afbeeldings/fluoresensie mikroskopie. Sellewensvatbaarheid is ten alle tye gemonitor. Hierdie eksperment is verder ook in ‘n pre-kliniese in vivo model uitgevoer waar C57BL/6 muise met E0771 xenografte (4 weke groei) geïnduseer is en in die volgende behandelingsgroepe verdeel is: (1) kontrole; (2) doxorubicin (5 mg.kg-1); (3) 2-methoxyestradiol (45 mg.kg-1); en (4) die kombinasie van laasgenoemde twee groepe. Die liggaamsgewig en die tempo van tumorgroei is tydens die hele eksperiment gemonitor. Resultate: CoCl2 behandeling het HIF-1α effektief gestabiliseer tydens normoksiese omstandighede. 2-Methoxyestradiol het HIF-1α uitdrukking tydens normoksiese en hipoksiese toestande onderdruk wanneer dit vergelyk is met siRNA transfeksie wat slegs tydens normoksiese toestande effektief was. HIF-1α stabilisering het gepaardgegaan met ‘n toename in autofagie asook morfologiese veranderinge in die mitochondria vanaf ‘n verlengde netwerk tot korter skyfagtige vorme. Aan die ander kant het HIF-1α onderdrukking ‘n toename in die apoptotiese merkers, nl kliewing in caspase-3 and PARP veroorsaak wat gepaard gegaan het met die herstel van die tubulêre mitochondriale netwerk. Die blootstelling van die MCF-7 selle aan 1 µM doxorubicin vir 12 ure het ‘n differensiële effek in die bioreduktiewe MTT bepaling tot gevolg gehad tussen normoksiese en hipoksiese toestande (42.97 ± 3.095%, p<0.1), terwyl die apoptotiese- en autofagiese paaie in beide toestande gestimuleer is. ‘n Insiggewende toename in fosfo-AMPK uitdrukking was sigbaar tydens normoksiese toestande van 21% O2, terwyl dit onveranderd gebly het tydens hipoksiese toestande van 0.1% ~O2 na doxorubicin behandeling. Die morfologie van die mitochondria het ‘n ‘kollerige’ voorkoms tydens doxorubicin behandeling gehad. Alhoewel die behandeling van die selle met beide middels gelyktydig, die differensiële effek soos weerspieël in die MTT bepaling ophef, is daar geen insiggewende verandering wanneer met doxorubicin behandeling vergelyk word nie. Apoptotiese seldood verminder met gelyktydige behandeling van biede middels tydens normoksiese en hipoksiese toestande. HIF1-α en autofagie het afgeneem tydens normoksiese toestande, maar bly vehoog tydens hipoksie. In die in vivo model, het die toediening van doxorubicin en 2-methoxyestradiol alleen en in kombinasie nie tumorgroei geaffekteer nie en ook nie sistemiese toksisiteit in enige van die eksperimentele muise tot gevolg gehad nie. Die afsonderlike toediening van die middels het ‘n afname in apoptose in ‘n toename in autofagie en p-AMPK uitdrukking tot gevolg gehad, terwyl afsonderlike toediening van die middels nie ‘n effek op HIF-1α uitdrukking gehad het nie. Die gelyktydige toediening van biede middels het egter ‘n onderdrukking van HIF1-α teweeggebring. Bespreking: Deur HIF-1α te induseer (CoCl2) en te inhibeer (2-methoxyestradiol en siRNA) in hierdie in vitro eksperimentele omstandighede, bevestig hierdie resultate dat autofagie afhanklik is van die uitdrukking van HIF-1α. Die bioreduktiewe MTT bepaling meet die metaboliese staat van die sel wat indirek sellewensvatbaarheid bepaal. Gebasseer op hierdie bepaling is bewys dat hipoksie ‘n weerstandbiedende fenotipe veroorsaak teen doxorubicin behandeling in neoplastiese MCF-7 selle. Doxorubicin veroorsaak ‘n toename in apoptose met geassosieerde mitochondriale fragmentering asook ‘n aktivering van die metaboliese sensor, AMPK, wat autofagie stimuleer in normoksiese omstandighede. Alhoewel ‘n toename in autofagie seldood kan stimuleer, spekuleer ons dat ‘n toename in autofagie tydens hipoksie verantwoordelik kan wees vir seloorlewing wat heel moontlik ook afhanklik van HIF-1α is. In kontras met die verwagting dat die kombinasie behandeling ‘n sinergistiese sitotoksiese effek sou teweegbring, dui ons resultate dat daar ‘n antagonistiese effek op sellewensvatbaarheid was. Ons stel voor dat die gekombineerde behandeling tydens normoksiese toestande MCF-7 neoplastiese selle stimuleer om in ‘n toestand van groeistaking in te gaan aangesien die resultate daarop dui dat ‘n afname in HIF-1α afhanklike autofagie nie sellulêre lewensvatbaarheid beïnvloed het nie. Tydens hipoksie, ten spyte van die bykomdende behandeling met die HIF-1α inhibitor (2-methoxyestradiol), het die vlakke van HIF-1α onveranderd gebly. Ons spekuleer dat dat dit die gevolg kan wees van die stabilisering van HIF-1α as gevolg van ‘n toename in ROS en TCA intermediate wat die gevolg van mitochondriale wanfunksie kan wees tydens bykomende terapie onder hipoksiese toestande. Dit is ook moontlik dat die mitogeniese effek wat waargeneem is met die MTT bepaling die gevolg kan wees van die omsetting van 2-methoxyestradiol na ‘n chemiese-reaktiewe estrogeen derivaat; moontlik as gevolg van die aksie van doxorubicin en die feit dat die sellyn wat in hierdie studie gebruik is, ‘n ER-positiewe kankersellyn is. Met verwysing na die in vivo eksperimentele model, spekuleer ons dat die molekulêre veranderinge wat nie in die tumorgroei weerspieël word nie, die resultaat van oneffektiewe tyds- en dosis behandelingswyses is, of foutiewe toediening van die middel kan wees. Gevolgtrekking: Ons verwerp dus ons hipotese gebaseer op die feit dat bykomende (adjuvante) behandeling eerder ‘n antogonistiese effek as ‘n sinergistiese effek op seldood in MCF-7 selle het. Hierdie resultate regverdig die nodigheid van intensiewe toetsing op die farmakodinamika van 2-methoxyestradiol asook die gebruik van meer informatiewe tegnieke om hierdie studie te komplimenteer. / CANSA and Marie Stander
258

Methodological aspects within the FMCA-method : do incubation time and the amount of tumor cells influence the antitumoral effect?

Svensson, Johanna January 2008 (has links)
<p>ABSTRACT</p><p>Chemotherapy is a common method used for cancer treatment. Especially when it concerns cancers that have grown invasively it seems to be the only efficient treatment due to the substances ability to reach and affect almost the entire body. One major obstacle regarding chemotherapy is that the patients often develop resistance to the cytotoxic substances used. Fluorometric microculture cytotoxicity assay (FMCA) is a method developed to measure sensitivity of tumor cells to different cytotoxic substances in vitro. The assay is based on hydrolysis of fluorescein diacetate to fluorescein by cells with intact cell membranes after incubation with drugs for 72 hours. This study investigated the impact of two methodological factors that may cause errors in the achieved results; namely the possible occurrence of drug decay during incubation and the use of an inappropriate amount of cells. These factors were tested by exposing the cytotoxic drugs to pre-incubation in absence of tumor cells for different times and to use suspensions with different concentrations of cells. The results indicated occurrence of drug decay in 3 of the 18 substances tested and that the amount of cells affected the results for most of the drugs tested but to different extent.</p>
259

Actinomycetes and fungi associated with marine invertebrates: a potential source of bioactive compounds

Mahyudin, Nor Ainy January 2008 (has links)
Actinomycetes and fungi were successfully isolated from both New Zealand and Malaysian marine invertebrates and classified as facultatively marine based on their ability to grow on both sea water and non-sea water media. Most of the extracts obtained from selected isolates were cytotoxic. A clear preference of the actinomycetes for solid-state fermentation was observed, however, for fungi no significant preference was seen. Three isolates of Streptomyces spp., four Penicillium spp. and two Paecilomyces spp. whose extracts showed good cytotoxicity were selected for further investigation. A small-scale extract obtained from a solid culture of Streptomyces sp. (LA3L2) showed good cytotoxicity and a new cytotoxic metabolite was isolated from a large-scale extract of Streptomyces sp. (LA3L2). This metabolite was characterized as S-methyl 2,4-dihydroxy-6-isopropyl-3,5-dimethylbenzothioate (5.15) and is only the third compound reported to contain the S-methyl benzothioate group. Two known compounds, montagnetol (5.16) and erythrin (5.18), were isolated from a further large-scale cultivation of Streptomyces sp. (LA3L2) and is the first reported actinomycete to produce these lichen-related compounds. In addition, two known inactive metabolites (bohemamine (5.1) and bohemamine B (5.2)) were identified from the small-scale extract. Streptomyces sp. (LA3L2) was also investigated for the effect of temperature and salinity on growth and cytotoxicity and shown to produce bohemamine only at 20 - 28℃ and 4% sea salt concentration on solid media. This isolate gave a low yield of active metabolite under all conditions. Small-scale extracts of two other Streptomyces spp. yielded three known cytotoxic metabolites. These were thiazostatin B (7.14) from Streptomyces sp. (LA5L4) and chromomycin A2 (7.1), chromomycin A3 (7.2) and chromomycin 02-3D (7.3) from Streptomyces sp. (LA3L1). All four Penicillium spp. produced known metabolites. Penicillium sp. (LY1L5) yielded two known metabolites, cycloaspeptide A (7.4) and α-cyclopiazonic acid (7.5). α-Cyclopiazonic acid (7.5) and three other known metabolites (roquefortine A (7.6), cyclopeptin (7.7) and viridicatin (7.8)) were isolated from Penicillum sp. (KK3T23). Penicillium sp. (KK3T8) produced brefeldin A (7.10), while mycophenolic acid (7.12) and brevianamide A (7.11) were produced by Penicillium sp. (KK4T14b). The effect of salinity on growth and cytotoxicity was investigated for the two Penicillium isolates producing the cytotoxic metabolite, α-cyclopiazonic acid (7.5). Saline conditions were not required for growth but metabolite production differed between the two isolates with respect to salinity. Isolate LY1L5 required saline conditions for α-cyclopiazonic production whereas isolate KK3T23 produced the metabolite under non-saline conditions and in concentrations of sea salt up to 6%. Three known compounds, indole-3-carboxylic acid (7.15), indole-3-carboxylate (7.17) and 5-carboxymellein (7.16) were identified from Paecilomyces sp. (PR5L9). Investigation of a small-scale extract obtained from a solid culture of another Paecilomyces sp. (PR10T2) resulted in the isolation and characterization of a unique structure of a symmetrical cyclic depsipeptide, epi-angolide (NAM 6-1). NAM 6-1 was considered as a new compound based on four homoisomeric configurations (A1, A2, A3 and A4). The value of dereplication procedures with respect to the rapid identification of metabolites and enhancement of in-house metabolite libraries is discussed. Structural elucidation of nine known metabolites (7.1, 7.2, 7.3, 7.5, 7.6, 7.7, 7.8, 7.10 and 7.11) was greatly aided by the in-house dereplication techniques using LC-MS-UV and AntiMarin database. A significant advantage was gained by the use of the CapNMR which enabled NMR characterization of very small quantities of metabolites (<20 µg). Approximately <5 µg of materials were required to perform 1D proton NMR experiments for the dereplication of seven known compounds; bohemamine (5.1), bohemamine B (5.2), thiazostatin B (7.14), indole-3-carboxylate (7.17) and 5-carboxymellein (7.16). Approximately 20 µg of materials were needed to acquire 1D and 2D (HSQC, HMBC and NOE) NMR spectra for structural elucidation of the new metabolite, S-methyl 2,4-dihydroxy-6-isopropyl-3,5-dimethylbenzothioate (5.15). Some 8 µg of materials were sufficient to perform 1D and 2D (COSY, HSQC and HMBC) NMR experiments for complete structural characterization of two known metabolites, montagnetol (5.16) and erythrin (5.18). Approximately 10 µg of materials were needed to acquire 1D and 2D NMR (COSY, HSQC and HMBC) experiments for structural elucidation of the new compound, epi-angolide NAM 6-1 (A1, A2, A3 and A4). Rapid identification of known fungal metabolites enabled the in-house HPLC-UV/Rt library to be enhanced by eight metabolites (7.5, 7.6, 7.7, 7.8, 7.10, 7.11, 7.17 and 7.16). An HPLC-UV/Rt library for actinomycete metabolites was successfully established with the insertion of eight known metabolites (5.1, 5.2, 5.16, 5.18, 7.1, 7.2, 7.3 and 7.14).
260

Investigating the Therapeutic Effects of Sphingosine-1-Phosphate Aganist Human Breast Cancer in Vitro and in Vivo

2012 September 1900 (has links)
Breast cancer is the most common malignancy diagnosed among women and is the first cause of neoplastic death in women globally. In the last decade our understanding of breast cancer biology has increased and led to the development of a number of targeted therapies, one of which is targeting the cell apoptosis pathway. One of the new targeting pathways under investigation, which was found to be involved in both cell apoptosis and cell proliferation processes, is the sphingolipid signalling pathway. The sphingolipid pathway represents a group of intracellular and extracellular bioactive lipid molecules, including ceramide, ceramide- 1-phosphate, sphingosine, and sphingosine-1-phosphate (S1P). In my research, I focused on the role S1P plays in breast cancer and its potential application as a therapeutic agent. I examined the effects of S1P on the apoptosis, proliferation, and cytotoxicity of different types of breast cancer cell lines in vitro. In addition, I evaluated the effect of both low and high doses of S1P when co-administrated with anticancer drugs commonly used in breast cancer treatment in vitro and in vivo. Moreover, I studied the S1P cellular distribution following exogenous administration. My results demonstrate that S1P can selectively induce apoptosis in breast cancer cells without harming normal breast cells and that S1P is more effective against aggressive breast cancer cells. Another major finding of my study is that S1P can increase the efficacy of chemotherapies against human breast cancer cells. Although S1P cannot directly substitute the current chemotherapies, S1P may function as a good candidate for combination therapy. Furthermore, my work showed that the pro-apoptotic and anti-proliferative effect of S1P is correlated with its intracellular action and that chronic exposure of exogenous S1P in vivo is not toxic to the major organs. Certainly, S1P inclusion in breast cancer treatment modalities may decrease the morbidity and mortality of breast cancer patients and improve clinical outcomes. Further investigations are required to understand the mechanism by which S1P induces apoptosis and inhibits cell proliferation.

Page generated in 0.051 seconds