Spelling suggestions: "subject:"décision cellulaire"" "subject:"écision cellulaire""
1 |
Molecular mechanisms for a switch-like mating decision in Saccharomyces cerevisiaeMalleshaiah, Mohan 04 1900 (has links)
Les changements évolutifs nous instruisent sur les nombreuses innovations permettant à chaque organisme de maximiser ses aptitudes en choisissant le partenaire approprié, telles que les caractéristiques sexuelles secondaires, les patrons comportementaux, les attractifs chimiques et les mécanismes sensoriels y répondant. L'haploïde de la levure Saccharomyces cerevisiae distingue son partenaire en interprétant le gradient de la concentration d'une phéromone sécrétée par les partenaires potentiels grâce à un réseau de protéines signalétiques de type kinase activées par la mitose (MAPK). La décision de la liaison sexuelle chez la levure est un événement en "tout–ourien",
à la manière d'un interrupteur. Les cellules haploïdes choisissent leur partenaire
sexuel en fonction de la concentration de phéromones qu’il produit. Seul le partenaire à proximité sécrétant des concentrations de phéromones égales ou supérieures à une
concentration critique est retenu. Les faibles signaux de phéromones sont attribués à des partenaires pouvant mener à des accouplements infructueux. Notre compréhension du mécanisme moléculaire contrôlant cet interrupteur de la décision d'accouplement reste encore mince.
Dans le cadre de la présente thèse, je démontre que le mécanisme de décision de la
liaison sexuelle provient de la compétition pour le contrôle de l'état de phosphorylation de quatre sites sur la protéine d'échafaudage Ste5, entre la MAPK, Fus3, et la phosphatase,Ptc1. Cette compétition résulte en la dissociation de type « intérupteur » entre Fus3 et
Ste5, nécessaire à la prise de décision d'accouplement en "tout-ou-rien". Ainsi, la décision de la liaison sexuelle s'effectue à une étape précoce de la voie de réponse aux phéromones et se produit rapidement, peut-être dans le but de prévenir la perte d’un partenaire potentiel. Nous argumentons que l'architecture du circuit Fus3-Ste5-Ptc1 génère un mécanisme inédit d'ultrasensibilité, ressemblant à "l'ultrasensibilité d'ordre zéro", qui
résiste aux variations de concentration de ces protéines. Cette robustesse assure que
l'accouplement puisse se produire en dépit de la stochasticité cellulaire ou de variations génétiques entre individus.Je démontre, par la suite, qu'un évènement précoce en réponse aux signaux
extracellulaires recrutant Ste5 à la membrane plasmique est également ultrasensible à
l'augmentation de la concentration de phéromones et que cette ultrasensibilité est
engendrée par la déphosphorylation de huit phosphosites en N-terminal sur Ste5 par la
phosphatase Ptc1 lorsqu'elle est associée à Ste5 via la protéine polarisante, Bem1.
L'interférence dans ce mécanisme provoque une perte de l'ultrasensibilité et réduit, du
même coup, l'amplitude et la fidélité de la voie de réponse aux phéromones à la
stimulation. Ces changements se reflètent en une réduction de la fidélité et de la précision
de la morphologie attribuable à la réponse d'accouplement. La polarisation dans
l'assemblage du complexe protéique à la surface de la membrane plasmique est un thème
général persistant dans tous les organismes, de la bactérie à l'humain. Un tel complexe est
en mesure d'accroître l'efficacité, la fidélité et la spécificité de la transmission du signal.
L'ensemble de nos découvertes démontre que l'ultrasensibilité, la précision et la
robustesse de la réponse aux phéromones découlent de la régulation de la phosphorylation
stoichiométrique de deux groupes de phosphosites sur Ste5, par la phosphatase Ptc1, un
groupe effectuant le recrutement ultrasensible de Ste5 à la membrane et un autre incitant
la dissociation et l'activation ultrasensible de la MAPK terminal Fus3. Le rôle modulateur
de Ste5 dans la décision de la destinée cellulaire étend le répertoire fonctionnel des
protéines d'échafaudage bien au-delà de l'accessoire dans la spécificité et l'efficacité des
traitements de l'information. La régulation de la dynamique des caractères signal-réponse
à travers une telle régulation modulaire des groupes de phosphosites sur des protéines
d'échafaudage combinées à l'assemblage à la membrane peut être un moyen général par
lequel la polarisation du destin cellulaire est obtenue. Des mécanismes similaires peuvent
contrôler les décisions cellulaires dans les organismes complexes et peuvent être
compromis dans des dérèglements cellulaires, tel que le cancer.
Finalement, sur un thème relié, je présente la découverte d'un nouveau mécanisme
où le seuil de la concentration de phéromones est contrôlé par une voie sensorielle de
nutriments, ajustant, de cette manière, le point prédéterminé dans lequel la quantité et la
qualité des nutriments accessibles dans l'environnement déterminent le seuil à partir
duquel la levure s'accouple. La sous-unité régulatrice de la kinase à protéine A (PKA),Bcy1, une composante clé du réseau signalétique du senseur aux nutriments, interagit
directement avec la sous-unité α des petites protéines G, Gpa1, le premier effecteur dans
le réseau de réponse aux phéromones. L'interaction Bcy1-Gpa1 est accrue lorsque la
cellule croit en présence d'un sucre idéal, le glucose, diminuant la concentration seuil
auquel la décision d'accouplement est activée. Compromettre l'interaction Bcy1-Gpa1 ou
inactiver Bcy1 accroît la concentration seuil nécessaire à une réponse aux phéromones.
Nous argumentons qu'en ajustant leur sensibilité, les levures peuvent intégrer le stimulus
provenant des phéromones au niveau du glucose extracellulaire, priorisant la décision de
survie dans un milieu pauvre ou continuer leur cycle sexuel en choisissant un
accouplement. / Evolution has resulted in numerous innovations that allow organisms to maximize
their fitness by choosing particular mating partners, including secondary sexual
characteristics, behavioural patterns, chemical attractants and corresponding sensory
mechanisms. The haploid yeast Saccharomyces cerevisiae selects mating partners by
interpreting the concentration gradient of pheromone secreted by potential mates through
a network of mitogen-activated protein kinase (MAPK) signaling proteins. The mating
decision in yeast is an all-or-none, or switch-like, response that allows cells to make
accurate decisions about which among potential partners to mate with and to filter weak
pheromone signals, thus avoiding inappropriate commitment to mating by responding
only at or above critical concentrations when a mate is sufficiently close. The molecular
mechanisms that govern the switch-like mating decision are poorly understood.
In this thesis I demonstrate that the switching mechanism arises from competition
between the MAPK Fus3 and a phosphatase Ptc1 for control of the phosphorylation state
of four sites on the scaffold protein Ste5. This competition results in a switch-like
dissociation of Fus3 from Ste5 that is necessary to generate the switch-like mating
response. Thus, the decision to mate is made at an early stage in the pheromone pathway
and occurs rapidly, perhaps to prevent the loss of the potential mate to competitors. We
argue that the architecture of the Fus3–Ste5–Ptc1 circuit generates a novel ultrasensitivity
mechanism that resembles “zero-order ultrasensitivity”, which is robust to variations in
the concentrations of these proteins. This robustness helps assure that mating can occur
despite stochastic or genetic variation between individuals.
I then demonstrate that during the mating response, an early event of Ste5
recruitment to plasma membrane is ultrasensitive and that it is generated by
dephosphorylation of eight N-terminal phosphosites on Ste5 by the phosphatase Ptc1
when associated with Ste5 via the polarization protein Bem1. Interference with this
mechanism results in loss of ultrasensitivity and reduced amplitude and therefore fidelity of the pheromone signaling response. These changes are reflected in reduced fidelity and
accuracy of the morphogenic mating response. Polarized assembly of signaling protein
complexes at the plasma membrane surface is a general theme recapitulated in all
organisms from bacteria to humans. Such complexes can increase the efficiency, fidelity
and specificity of signal transduction. Together with our previous findings, our results
demonstrate that ultrasensitivity, accuracy and robustness of the pheromone response
occurs through regulation of the stoichiometry of phosphorylation of two clusters of
phosphosites on Ste5, by Ptc1, one cluster mediating ultrasensitive recruitment of Ste5 to
the membrane and the other, ultrasensitive dissociation and activation of the terminal
MAP kinase Fus3. The role of Ste5 as a direct modulator of a cell-fate decision expands
the functional repertoire of scaffold proteins beyond providing specificity and efficiency
of information processing. Regulation of dynamic signal-response characteristics through
such modular regulation of clusters of phosphosites may be a general means by which cell
fate decisions are achieved. Similar mechanisms may govern cellular decisions in higher
organisms and be disrupted in cancer.
Finally, in a related theme, I present the discovery of a novel mechanisms by
which the threshold of pheromone response is controlled by a nutrient-sensing pathway,
thus adjusting the set-point at which the quantity and quality of nutrients available in the
environment set the threshold of pheromone at which yeast will mate. The regulatory
subunit of protein kinase A (PKA), Bcy1, a key component of a nutrient sensing signaling
network, directly interacts with the α subunit of G-protein, Gpa1, the primary effector of
the pheromone signaling network. The Bcy1-Gpa1 interaction is enhanced when cells are
grown in their ideal carbon source glucose, lowering the threshold concentration at which
the mating response is activated. Disruption of Bcy1-Gpa1 interaction or Bcy1 deletion
increased the threshold concentration for the mating response. We argue that by adjusting
their sensitivity, yeast can integrate pheromone stimulus with glucose levels and prioritize decisions to survive in a nutrient-starved environment or to continue their sexual cycle by mating.
|
2 |
Phenotype plasticity and populations’ dynamics : social interactions among cancer cells / La plasticité des phénotypes et la dynamique des populations : interactions sociales entre cellules cancéreusesAndré-Ratsimbazafy, Marie 20 June 2016 (has links)
On admet communément que les tumeurs proviennent de cellules échappant aux contrôles homéostatiques qui sous-tendent les structures histologiques saines et que le phénotype d’une cellule n’est pas le résultat de processus génétiques et biochimiques déterministes mais la conséquence stochastique de réseaux de régulation intra- et intercellulaires. Ce doctorat vise à étudier quantitativement l’homéostasie phénotypique de populations cellulaires et à présenter une approche à la question fondamentale, mais jusqu’alors jamais étudiée, concernant l’autonomie versus le contrôle collectif du devenir des cellules. Nous avons étudié sur le long terme, par cytométrie de flux et dans des conditions 2D puis 3D, le niveau d’expression de CD24 et CD44 de deux lignées cellulaires de cancer du sein (SUM149-PT et SUM159-PT). Trois phénotypes ont été isolés (CD24-/CD44+, CD24+/CD44+, CD24-/CD44-), ce dernier n’avait pour le moment pas été documenté dans la littérature. Le comportement phénotypique des sous-populations CD44-low et CD44-high a été caractérisé en évaluant leur proportion et en analysant leur spectre de fluorescence. Ainsi nous avons observé des comportements périodiques d’apparition et de disparition de pool de cellules caractéristiques des lignées et une re-diversification des phénotypes pour chacune des sous-population. Seule la population issue de CD24-/CD44- re-diversifiée présente le même équilibre que la population initiale non triée. En 3D, le processus de re-diversification a été observé dans les tumorsphères issues de CD24-/CD44+ et CD24+/CD44+. Les cellules CD24-/CD44- n’ont pas ce potentiel mais survivent néanmoins à l’anoïkis. Ces comportements laissent penser qu’il existe une coordination intercellulaire régulant l’équilibre des proportions phénotypiques. Pour découvrir les règles sociales régissant l’organisation spatiale inter-phénotypique, nous avons mis en place un rapporteur des variations du niveau d’expression endogène des marqueurs d’intérêt et élaboré un modèle théorique d’interactions cellulaires. Ce travail a conforté notre hypothèse selon laquelle il s’établit des règles sociales inter-cellulaires déterminant l’expression phénotypique à l’échelle uni- et pluricellulaire. / It is commonly accepted that tumors arise from cells that escape the homeostatic controls which underlie the healthy histological structure and that cell phenotype is not the result of deterministic biochemical and genetic processes, but rather the stochastic and dynamic outcome of multiple intra- and intercellular regulation networks. This PhD aims to quantitatively study the phenotypic homeostasis of the cell populations and to present an approach to the fundamental question, never heretofore studied, regarding the autonomy versus collective control of cell fate. We studied in the long run, using flow cytometry and in 2D and 3D conditions, the level of expression of CD24 and CD44 of two breast cancer cell lines (SUM149-PT and SUM159-PT). Three phenotypes were isolated (CD24-/CD44+, CD24+/CD44+, CD24-/CD44-), the latter had not previously been documented in the literature. The phenotypic behavior of CD44-low and CD44-high subpopulations has been characterized by assessing their proportion and analyzing the fluorescence map. Thereby, we observed both a periodic behavior of appearance and disappearance of pool of cells characteristics of each cell lines and a phenotypic re-diversification for each subpopulation. Only the resulting population derived from CD24-/CD44- provided the same balance as the original unsorted population. 3D re-diversification process was observed in tumorspheres from CD24-/CD44+ and CD24+/CD44+. The cells CD24-/CD44did not have that potential but nonetheless outlived anoikis. These behaviors suggest that there is an inter-cell coordination regulating the balance of phenotypic proportions. To discover the social rules regulating inter-phenotypic spatial organization, we have set up a reporter of the endogenous variations of CD24 and CD44 and developed a theoretical model of cell interactions. This work has confirmed our hypothesis that inter-cellular social rules are determining the phenotypic expression at both the uni- and multicellular scales.
|
3 |
Molecular mechanisms for a switch-like mating decision in Saccharomyces cerevisiaeMalleshaiah, Mohan 04 1900 (has links)
No description available.
|
Page generated in 0.0559 seconds