• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Robust low-rank tensor approximations using group sparsity / Approximations robustes de tenseur de rang faible en utilisant la parcimonie de groupe

Han, Xu 21 January 2019 (has links)
Le développement de méthodes de décomposition de tableaux multi-dimensionnels suscite toujours autant d'attention, notamment d'un point de vue applicatif. La plupart des algorithmes, de décompositions tensorielles, existants requièrent une estimation du rang du tenseur et sont sensibles à une surestimation de ce dernier. Toutefois, une telle estimation peut être difficile par exemple pour des rapports signal à bruit faibles. D'un autre côté, estimer simultanément le rang et les matrices de facteurs du tenseur ou du tenseur cœur n'est pas tâche facile tant les problèmes de minimisation de rang sont généralement NP-difficiles. Plusieurs travaux existants proposent d'utiliser la norme nucléaire afin de servir d'enveloppe convexe de la fonction de rang. Cependant, la minimisation de la norme nucléaire engendre généralement un coût de calcul prohibitif pour l'analyse de données de grande taille. Dans cette thèse, nous nous sommes donc intéressés à l'approximation d'un tenseur bruité par un tenseur de rang faible. Plus précisément, nous avons étudié trois modèles de décomposition tensorielle, le modèle CPD (Canonical Polyadic Decomposition), le modèle BTD (Block Term Decomposition) et le modèle MTD (Multilinear Tensor Decomposition). Pour chacun de ces modèles, nous avons proposé une nouvelle méthode d'estimation de rang utilisant une métrique moins coûteuse exploitant la parcimonie de groupe. Ces méthodes de décomposition comportent toutes deux étapes : une étape d'estimation de rang, et une étape d'estimation des matrices de facteurs exploitant le rang estimé. Des simulations sur données simulées et sur données réelles montrent que nos méthodes présentent toutes une plus grande robustesse à la présence de bruit que les approches classiques. / Last decades, tensor decompositions have gained in popularity in several application domains. Most of the existing tensor decomposition methods require an estimating of the tensor rank in a preprocessing step to guarantee an outstanding decomposition results. Unfortunately, learning the exact rank of the tensor can be difficult in some particular cases, such as for low signal to noise ratio values. The objective of this thesis is to compute the best low-rank tensor approximation by a joint estimation of the rank and the loading matrices from the noisy tensor. Based on the low-rank property and an over estimation of the loading matrices or the core tensor, this joint estimation problem is solved by promoting group sparsity of over-estimated loading matrices and/or the core tensor. More particularly, three new methods are proposed to achieve efficient low rank estimation for three different tensors decomposition models, namely Canonical Polyadic Decomposition (CPD), Block Term Decomposition (BTD) and Multilinear Tensor Decomposition (MTD). All the proposed methods consist of two steps: the first step is designed to estimate the rank, and the second step uses the estimated rank to compute accurately the loading matrices. Numerical simulations with noisy tensor and results on real data the show effectiveness of the proposed methods compared to the state-of-the-art methods.
2

Breaking the curse of dimensionality based on tensor train : models and algorithms / Gérer le fleau de la dimension à l'aide des trains de tenseurs : modèles et algorithmes

Zniyed, Yassine 15 October 2019 (has links)
Le traitement des données massives, communément connu sous l’appellation “Big Data”, constitue l’un des principaux défis scientifiques de la communauté STIC.Plusieurs domaines, à savoir économique, industriel ou scientifique, produisent des données hétérogènes acquises selon des protocoles technologiques multi-modales. Traiter indépendamment chaque ensemble de données mesurées est clairement une approche réductrice et insatisfaisante. En faisant cela, des “relations cachées” ou des inter-corrélations entre les données peuvent être totalement ignorées.Les représentations tensorielles ont reçu une attention particulière dans ce sens en raison de leur capacité à extraire de données hétérogènes et volumineuses une information physiquement interprétable confinée à un sous-espace de dimension réduite. Dans ce cas, les données peuvent être organisées selon un tableau à D dimensions, aussi appelé tenseur d’ordre D.Dans ce contexte, le but de ce travail et que certaines propriétés soient présentes : (i) avoir des algorithmes de factorisation stables (ne souffrant pas de probème de convergence), (ii) avoir un faible coût de stockage (c’est-à-dire que le nombre de paramètres libres doit être linéaire en D), et (iii) avoir un formalisme sous forme de graphe permettant une visualisation mentale simple mais rigoureuse des décompositions tensorielles de tenseurs d’ordre élevé, soit pour D > 3.Par conséquent, nous nous appuyons sur la décomposition en train de tenseurs (TT) pour élaborer de nouveaux algorithmes de factorisation TT, et des nouvelles équivalences en termes de modélisation tensorielle, permettant une nouvelle stratégie de réduction de dimensionnalité et d'optimisation de critère des moindres carrés couplés pour l'estimation des paramètres d'intérêts nommé JIRAFE.Ces travaux d'ordre méthodologique ont eu des applications dans le contexte de l'analyse spectrale multidimensionelle et des systèmes de télécommunications à relais. / Massive and heterogeneous data processing and analysis have been clearly identified by the scientific community as key problems in several application areas. It was popularized under the generic terms of "data science" or "big data". Processing large volumes of data, extracting their hidden patterns, while preforming prediction and inference tasks has become crucial in economy, industry and science.Treating independently each set of measured data is clearly a reductiveapproach. By doing that, "hidden relationships" or inter-correlations between thedatasets may be totally missed. Tensor decompositions have received a particular attention recently due to their capability to handle a variety of mining tasks applied to massive datasets, being a pertinent framework taking into account the heterogeneity and multi-modality of the data. In this case, data can be arranged as a D-dimensional array, also referred to as a D-order tensor.In this context, the purpose of this work is that the following properties are present: (i) having a stable factorization algorithms (not suffering from convergence problems), (ii) having a low storage cost (i.e., the number of free parameters must be linear in D), and (iii) having a formalism in the form of a graph allowing a simple but rigorous mental visualization of tensor decompositions of tensors of high order, i.e., for D> 3.Therefore, we rely on the tensor train decomposition (TT) to develop new TT factorization algorithms, and new equivalences in terms of tensor modeling, allowing a new strategy of dimensionality reduction and criterion optimization of coupled least squares for the estimation of parameters named JIRAFE.This methodological work has had applications in the context of multidimensional spectral analysis and relay telecommunications systems.

Page generated in 0.1449 seconds