• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Elaboration par différents procédés de pulvérisation et caractérisation de mono et multi-couches minces de carbure de bore et de carbonitrure de bore

Tavsanoglu, Tolga 14 May 2009 (has links) (PDF)
Au cours des 30 dernières années, l'intérêt fut très marqué pour la recherche dans le domaine des couches minces dures et résistant à l'usure. Des matériaux ont été développés sous forme de couches minces céramiques pour des applications industrielles telles que des outils de coupe, des pièces automobiles et différents composants de machine. Les matériaux en jeu étaient, TiN, TiAlN, TiC, SiC, WC et carbone adamantin (DLC) par exemple. Cependant, les besoins technologiques et industriels d'aujourd'hui nécessitent l'utilisation des couches minces avec des propriétés plus évoluées. Pour cela, le système ternaire B-C-N avec ses phases ultra-dures a attiré beaucoup l'attention ces dernières années. Le carbure de bore (B4C) en particulier, avec sa haute dureté et son module d'Young élevé en plus de ses autres propriétés intéressantes, est l'un des matériaux les plus prometteurs. Une autre possibilité repose sur le carbonitrure de bore (BCN) qui présente des propriétés différentes en raison de la combinaison possible de plusieurs phases telles que le diamant, le nitrure de bore cubique (c-BN) et le nitrure de bore hexagonal (h-BN). Une recherche bibliographique détaillée indique le fait que ces deux matériaux n'ont pas été suffisamment étudiés quand sous forme de couches minces. Le carbure de bore est l'un des matériaux les moins étudiés dans le cas de techniques de dépôt en phase vapeur telles que la pulvérisation cathodique. C'est également le composé le moins étudié dans le diagramme ternaire B-C-N. D'autre part, dans la bibliographie, presque tout l'effort a porté sur le dépôt du nitrure de bore cubique. Il existe très peu d'études centrées sur l'effet de l'incorporation d'azote dans la structure de carbure de bore et les différentes phases qui pourraient être obtenues. Le but de ce travail est d'étudier, en premier, l'effet de différents paramètres de pulvérisation sur les propriétés des couches minces de carbure de bore et d'établir des relations entre paramètres de dépôt, croissance des couches de carbure de bore et propriétés mécaniques et d'usure-frottement. Le deuxième objectif est d'étudier l'effet de l'incorporation d'azote dans la structure de carbure de bore pour établir une couche de carbonitrure de bore avec une dureté et une ténacité optimales ainsi qu'une résistance à l'usure élevée. Trois types de couches de carbure de bore bien adhérentes et homogènes ont été déposées par pulvérisation cathodique magnétron classique à courant continu (DC), pulvérisation cathodique magnétron DC assisté par plasma et pulvérisation cathodique radiofréquence (RF). Les couches minces de carbonitrure de bore déposées par pulvérisation cathodique magnétron a courant continu en mode réactif avec addition d'azote dans la composition du gaz plasmagène ont été également étudiées. La conception de multicouches fonctionnelles a permis de déposer des couches de carbure et carbonitrure de bore plus épaisses et adhérentes. Une cible de carbure de bore conductrice, produite par pressage à chaud de poudres de carbure de bore et une cible de carbure de bore commerciale ont été utilisées pour les dépôts par décharge à courant continu et RF respectivement. L'effet des paramètres de dépôt sur les différentes propriétés des couches a été évalué par plusieurs techniques de caractérisation. La composition élémentaire des dépôts a été déterminée par microsonde électronique de Castaing (EPMA). La microscopie à balayage électronique haute résolution avec un canon à émission de champ (FE-SEM) a servi à examiner la microstructure et la topographie des couches. Les profils de profondeur élémentaires des dépôts ont été obtenus par spectrométrie de masse d'ions secondaires (SIMS) et les propriétés nanomécaniques ont mesurées par nanoindentation. Le comportement tribologique des dépôts a été étudié en utilisant un tribomètre « pion-disque ». Les liaisons chimiques ont été identifiées par la spectroscopie infrarouge à transformée de Fourier (FTIR). La nanostructure et la cristallinité des couches ont été caractérisées grâce à des observations par microscopie électronique en transmission (TEM). Les résultats ont démontré que les couches de carbure de bore constituent de bons revêtements à dureté élevée pour résister à l'usure. Grâce au contrôle des paramètres de pulvérisation, différentes microstructures correspondants à différentes propriétés ont pu être obtenues. Grâce à l'incorporation de l'azote dans la structure de carbure de bore, des couches présentant une dureté optimale et une résistance à l'usure élevée ont été développées, donnant ainsi la possibilité d'élargir la gamme d'applications pour ces dépôts. On a aussi constaté que la conception en multicouche fonctionnelle était une façon d'empêcher le décollement des couches et éviter des problèmes liés aux contraintes résiduelles pour les dépôts durs et résistants à l'usure. Des couches plus épaisses de carbure de bore et de carbonitrure de bore pour plusieurs applications industrielles, peuvent donc efficacement être déposées grâce a une conception appropriée des différentes sous-couches.
2

Modélisation et simulation numérique du procédé Self-Induced Ion Plating (SIIP)

Contino, Antonella 26 October 2006 (has links)
Le self-induced ion plating (S.I.I.P.) est un procédé hybride entre l’évaporation sous vide et la pulvérisation cathodique magnétron. L’ionisation d’un gaz rare (argon) est obtenue grâce à la différence de potentiel appliquée entre une cathode d’étain (matériau à évaporer) et un substrat (tôle d’acier à revêtir) relié à la masse. Les ions positifs Ar+ sont accélérés vers la cible par le champ électrique et bombardent celle-ci avec une énergie importante. Ce bombardement ionique de la surface de la cible et l’isolation thermique du système induisent l’échauffement de la cible, sa fusion et enfin son évaporation. Afin de garantir un bon rendement au procédé, un magnétron d’aimants permanents est placé sous la cible à évaporer (phénomène de confinement magnétique). Le gaz métallique évaporé se solidifie au contact du substrat formant la couche de dépôt souhaitée. L’objectif de cette thèse revêt deux aspects : la mise en évidence des phénomènes physiques présents au sein du système et la simulation numérique de ceux-ci afin de déterminer l’épaisseur de dépôt obtenue sur la largeur du substrat. Le modèle de simulation du S.I.I.P. est scindé en quatre étapes. La première étape consiste à calculer le champ magnétique produit par le magnétron. Ce champ magnétique dicte le comportement des électrons qui sont à l’origine de l’ionisation de l’argon et de ce fait, il est une donnée indispensable à la deuxième étape à savoir, la modélisation du bombardement ionique et la détermination de la distribution du flux de chaleur transmis à la cible par celui-ci. Dans cette deuxième étape nous utilisons un modèle de suivi de particules basé sur une méthode statistique connue sous le nom de méthode de Monte-Carlo. Le phénomène du bombardement ionique modélisé, au cours de la troisième étape, nous calculons les échanges thermiques qui ont lieu dans le S.I.I.P. Les modes de transfert considérés sont : la conduction, le rayonnement et la convection (convection naturelle, convection électromagnétique et convection Marangoni). Enfin, le champ de température obtenu par la modélisation thermique, couplé à la théorie de l'évaporation, nous permet de déterminer le flux de matière évaporé et déposé sur le substrat suite à son passage au-dessus du système de dépôt. L’étude du S.I.I.P. a mis en évidence la complexité et la multidisciplinarité des phénomènes physiques mis en jeu dans les procédés PVD. De plus les résultats obtenus, validés à partir des mesures, nous ont permis de mettre en évidence l’importance significative du phénomène de convection Marangoni.
3

Conception, développement et validation de procédés plasma à l'air libre pour le dépôt direct de revêtements pour des applications biomédicales

Morand, Gabriel 01 December 2023 (has links)
Thèse ou mémoire avec insertion d'articles. / Thèse en cotutelle : « Université Laval, Québec, Canada, Philosophiæ doctor (Ph. D.) et E Nat Sup Chim Paris, Paris, France » / Le contrôle des propriétés de surface des dispositifs médicaux implantés est essentiel pour leur succès clinique. Les procédés plasma à l'air libre sont de plus de plus populaires pour traiter efficacement ces surfaces. Ils offrent une alternative innovante, économique et écologique à certains procédés conventionnels de modification de surface tout en étant facilement automatisables à grande échelle. Dans cette thèse, deux procédés plasma à l'air libre ont été conçus, développés et validés pour contrôler les propriétés biologiques de surface de biomatériaux. Ils ont permis d'explorer les deux stratégies majoritaires utilisées pour produire des surfaces bioactives spécifiques : l'immobilisation covalente de molécules et la libération contrôlée d'agents bioactifs. Dans la première approche, des couches minces contenant des fonctions amines primaires (NH₂) qui servent à l'ancrage covalent de molécules ont été déposées avec une torche plasma à arc. Dans la seconde approche, des revêtements composites biodégradables libérant progressivement divers agents ont été déposées avec une décharge à barrière diélectrique en une seule étape. Dans les deux cas, l'impact des paramètres des procédés a été exploré et la nature des revêtements a été caractérisée et optimisée pour des applications biomédicales. Plusieurs phénomènes ouvrant de nouvelles perspectives pour l'innovation des procédés plasma à la pression atmosphérique ont été mis en évidence et explorés. Les plus importants concernent l'utilisation d'aérosols qui permet de préserver la structure chimique des précurseurs et des molécules dans le dépôt, habituellement plus dégradées dans les procédés plasma en phase vapeur. Cela a notamment permis le dépôt effectif de NH₂, d'anhydrides et d'esters, ainsi que de contrôler finement la nature des revêtements via la structure des précurseurs de polymérisation. Des perspectives sérieuses pour une meilleure compréhension mécanistique et une amélioration des procédés plasma ont été discutées, telles que l'exploitation de l'évaporation de solvants et des précurseurs, le contrôle de la température, l'impact de la cinétique de polymérisation sur la morphologie ou l'utilisation de systèmes de pulvérisation double. Les procédés à l'air libre développés ont montré une grande versatilité et flexibilité qui permettent d'adapter et de personnaliser les revêtements déposés. Ils ont principalement été explorés pour créer des surfaces antibactériennes mais ont le potentiel d'être utilisés pour d'autres applications biomédicales et en biotechnologie. / Controlling the surface properties of implanted biomedical devices is essential for their clinical success. Open-air plasma processes have gained popularity for effectively treating these surfaces. They offer an innovative, economical, and environmentally friendly alternative to certain conventional surface modification processes while being easily automated and scaled-up. In this thesis, two open-air plasma processes were designed, developed, and validated to tune the biological surface properties of biomaterials. These processes allowed to explore two major strategies for producing specific bioactive surfaces: covalent molecule grafting and controlled drug delivery. In the first approach, thin films containing primary amine (NH₂) groups for covalent molecules immobilization were deposited with an arc-plasma jet. In the second approach, composite biodegradable coatings capable of controlled release of various agents were deposited with a dielectric barrier discharge in a single step. In both processes, process parameters were explored, and the nature of the coatings was fully characterized and optimized for biomedical applications. Several phenomena opening new perspectives for the innovation of atmospheric pressure plasma processes were highlighted and investigated. The most important ones concern the use of aerosols, which allows the preservation of the chemical structure of the precursors and molecules in the coating, which are usually more degraded in vapor phase plasma processes. This has allowed the effective deposition of NH₂, anhydrides and esters as well as the fine control of the nature of the coatings via the structure of the polymerization precursors. Serious perspectives for a better mechanistic understanding and enhancement of plasma processes were discussed, including the benefit of solvent and precursor evaporation, temperature control, impact of polymerization kinetics on morphology and the use of dual spray systems. The developed open-air processes have shown great versatility and flexibility to adapt and customize the deposited coatings. They were mainly explored to create antibacterial surfaces but have the potential to be used for other biomedical and biotechnology applications.

Page generated in 0.0643 seconds