Spelling suggestions: "subject:"dépendance dde données"" "subject:"dépendance dee données""
1 |
Discovering data quality rules in a master data management context / Fouille de règles de qualité de données dans un contexte de gestion de données de référenceDiallo, Thierno Mahamoudou 17 July 2013 (has links)
Le manque de qualité des données continue d'avoir un impact considérable pour les entreprises. Ces problèmes, aggravés par la quantité de plus en plus croissante de données échangées, entrainent entre autres un surcoût financier et un rallongement des délais. De ce fait, trouver des techniques efficaces de correction des données est un sujet de plus en plus pertinent pour la communauté scientifique des bases de données. Par exemple, certaines classes de contraintes comme les Dépendances Fonctionnelles Conditionnelles (DFCs) ont été récemment introduites pour le nettoyage de données. Les méthodes de nettoyage basées sur les CFDs sont efficaces pour capturer les erreurs mais sont limitées pour les corriger . L’essor récent de la gestion de données de référence plus connu sous le sigle MDM (Master Data Management) a permis l'introduction d'une nouvelle classe de règle de qualité de données: les Règles d’Édition (RE) qui permettent d'identifier les attributs en erreur et de proposer les valeurs correctes correspondantes issues des données de référence. Ces derniers étant de très bonne qualité. Cependant, concevoir ces règles manuellement est un processus long et coûteux. Dans cette thèse nous développons des techniques pour découvrir de manière automatique les RE à partir des données source et des données de référence. Nous proposons une nouvelle sémantique des RE basée sur la satisfaction. Grace à cette nouvelle sémantique le problème de découverte des RE se révèle être une combinaison de la découverte des DFCs et de l'extraction des correspondances entre attributs source et attributs des données de référence. Nous abordons d'abord la découverte des DFCs, en particulier la classe des DFCs constantes très expressives pour la détection d'incohérence. Nous étendons des techniques conçues pour la découverte des traditionnelles dépendances fonctionnelles. Nous proposons ensuite une méthode basée sur les dépendances d'inclusion pour extraire les correspondances entre attributs source et attributs des données de référence avant de construire de manière automatique les RE. Enfin nous proposons quelques heuristiques d'application des ER pour le nettoyage de données. Les techniques ont été implémenté et évalué sur des données synthétiques et réelles montrant la faisabilité et la robustesse de nos propositions. / Dirty data continues to be an important issue for companies. The datawarehouse institute [Eckerson, 2002], [Rockwell, 2012] stated poor data costs US businesses $611 billion dollars annually and erroneously priced data in retail databases costs US customers $2.5 billion each year. Data quality becomes more and more critical. The database community pays a particular attention to this subject where a variety of integrity constraints like Conditional Functional Dependencies (CFD) have been studied for data cleaning. Repair techniques based on these constraints are precise to catch inconsistencies but are limited on how to exactly correct data. Master data brings a new alternative for data cleaning with respect to it quality property. Thanks to the growing importance of Master Data Management (MDM), a new class of data quality rule known as Editing Rules (ER) tells how to fix errors, pointing which attributes are wrong and what values they should take. The intuition is to correct dirty data using high quality data from the master. However, finding data quality rules is an expensive process that involves intensive manual efforts. It remains unrealistic to rely on human designers. In this thesis, we develop pattern mining techniques for discovering ER from existing source relations with respect to master relations. In this set- ting, we propose a new semantics of ER taking advantage of both source and master data. Thanks to the semantics proposed in term of satisfaction, the discovery problem of ER turns out to be strongly related to the discovery of both CFD and one-to-one correspondences between sources and target attributes. We first attack the problem of discovering CFD. We concentrate our attention to the particular class of constant CFD known as very expressive to detect inconsistencies. We extend some well know concepts introduced for traditional Functional Dependencies to solve the discovery problem of CFD. Secondly, we propose a method based on INclusion Dependencies to extract one-to-one correspondences from source to master attributes before automatically building ER. Finally we propose some heuristics of applying ER to clean data. We have implemented and evaluated our techniques on both real life and synthetic databases. Experiments show both the feasibility, the scalability and the robustness of our proposal.
|
2 |
A runtime system for data-flow task programming on multicore architectures with accelerators / Uma ferramenta para programação com dependência de dados em arquiteturas multicore com aceleradores / Vers un support exécutif avec dépendance de données pour les architectures multicoeur avec des accélérateursLima, João Vicente Ferreira January 2014 (has links)
Dans cette thèse , nous proposons d’étudier des questions sur le parallélism de tâche avec dépendance de données dans le cadre de machines multicoeur avec des accélérateurs. La solution proposée a été développée en utilisant l’interface de programmation haute niveau XKaapi du projet MOAIS de l’INRIA Rhône-Alpes. D’abord nous avons étudié des questions liés à une approche d’exécution totalement asyncrone et l’ordonnancement par vol de travail sur des architectures multi-GPU. Le vol de travail avec localité de données a montré des résultats significatifs, mais il ne prend pas en compte des différents ressources de calcul. Ensuite nous avons conçu une interface et une modèle de coût qui permettent d’écrire des politiques d’ordonnancement sur XKaapi. Finalement on a évalué XKaapi sur un coprocesseur Intel Xeon Phi en mode natif. Notre conclusion est double. D’abord nous avons montré que le modèle de programmation data-flow peut être efficace sur des accélérateurs tels que des GPUs ou des coprocesseurs Intel Xeon Phi. Ensuite, le support à des différents politiques d’ordonnancement est indispensable. Les modèles de coût permettent d’obtenir de performance significatifs sur des calculs très réguliers, tandis que le vol de travail permet de redistribuer la charge en cours d’exécution. / Esta tese investiga os desafios no uso de paralelismo de tarefas com dependências de dados em arquiteturas multi-CPU com aceleradores. Para tanto, o XKaapi, desenvolvido no grupo de pesquisa MOAIS (INRIA Rhône-Alpes), é a ferramenta de programação base deste trabalho. Em um primeiro momento, este trabalho propôs extensões ao XKaapi a fim de sobrepor transferência de dados com execução através de operações concorrentes em GPU, em conjunto com escalonamento por roubo de tarefas em multi-GPU. Os resultados experimentais sugerem que o suporte a asincronismo é importante à escalabilidade e desempenho em multi-GPU. Apesar da localidade de dados, o roubo de tarefas não pondera a capacidade de processamento das unidades de processamento disponíveis. Nós estudamos estratégias de escalonamento com predição de desempenho em tempo de execução através de modelos de custo de execução. Desenvolveu-se um framework sobre o XKaapi de escalonamento que proporciona a implementação de diferentes algoritmos de escalonamento. Esta tese também avaliou o XKaapi em coprocessodores Intel Xeon Phi para execução nativa. A conclusão desta tese é dupla. Primeiramente, nós concluímos que um modelo de programação com dependências de dados pode ser eficiente em aceleradores, tais como GPUs e coprocessadores Intel Xeon Phi. Não obstante, uma ferramenta de programação com suporte a diferentes estratégias de escalonamento é essencial. Modelos de custo podem ser usados no contexto de algoritmos paralelos regulares, enquanto que o roubo de tarefas poder reagir a desbalanceamentos em tempo de execução. / In this thesis, we propose to study the issues of task parallelism with data dependencies on multicore architectures with accelerators. We target those architectures with the XKaapi runtime system developed by the MOAIS team (INRIA Rhône-Alpes). We first studied the issues on multi-GPU architectures for asynchronous execution and scheduling. Work stealing with heuristics showed significant performance results, but did not consider the computing power of different resources. Next, we designed a scheduling framework and a performance model to support scheduling strategies over XKaapi runtime. Finally, we performed experimental evaluations over the Intel Xeon Phi coprocessor in native execution. Our conclusion is twofold. First we concluded that data-flow task programming can be efficient on accelerators, which may be GPUs or Intel Xeon Phi coprocessors. Second, the runtime support of different scheduling strategies is essential. Cost models provide significant performance results over very regular computations, while work stealing can react to imbalances at runtime.
|
3 |
A runtime system for data-flow task programming on multicore architectures with accelerators / Uma ferramenta para programação com dependência de dados em arquiteturas multicore com aceleradores / Vers un support exécutif avec dépendance de données pour les architectures multicoeur avec des accélérateursLima, João Vicente Ferreira January 2014 (has links)
Dans cette thèse , nous proposons d’étudier des questions sur le parallélism de tâche avec dépendance de données dans le cadre de machines multicoeur avec des accélérateurs. La solution proposée a été développée en utilisant l’interface de programmation haute niveau XKaapi du projet MOAIS de l’INRIA Rhône-Alpes. D’abord nous avons étudié des questions liés à une approche d’exécution totalement asyncrone et l’ordonnancement par vol de travail sur des architectures multi-GPU. Le vol de travail avec localité de données a montré des résultats significatifs, mais il ne prend pas en compte des différents ressources de calcul. Ensuite nous avons conçu une interface et une modèle de coût qui permettent d’écrire des politiques d’ordonnancement sur XKaapi. Finalement on a évalué XKaapi sur un coprocesseur Intel Xeon Phi en mode natif. Notre conclusion est double. D’abord nous avons montré que le modèle de programmation data-flow peut être efficace sur des accélérateurs tels que des GPUs ou des coprocesseurs Intel Xeon Phi. Ensuite, le support à des différents politiques d’ordonnancement est indispensable. Les modèles de coût permettent d’obtenir de performance significatifs sur des calculs très réguliers, tandis que le vol de travail permet de redistribuer la charge en cours d’exécution. / Esta tese investiga os desafios no uso de paralelismo de tarefas com dependências de dados em arquiteturas multi-CPU com aceleradores. Para tanto, o XKaapi, desenvolvido no grupo de pesquisa MOAIS (INRIA Rhône-Alpes), é a ferramenta de programação base deste trabalho. Em um primeiro momento, este trabalho propôs extensões ao XKaapi a fim de sobrepor transferência de dados com execução através de operações concorrentes em GPU, em conjunto com escalonamento por roubo de tarefas em multi-GPU. Os resultados experimentais sugerem que o suporte a asincronismo é importante à escalabilidade e desempenho em multi-GPU. Apesar da localidade de dados, o roubo de tarefas não pondera a capacidade de processamento das unidades de processamento disponíveis. Nós estudamos estratégias de escalonamento com predição de desempenho em tempo de execução através de modelos de custo de execução. Desenvolveu-se um framework sobre o XKaapi de escalonamento que proporciona a implementação de diferentes algoritmos de escalonamento. Esta tese também avaliou o XKaapi em coprocessodores Intel Xeon Phi para execução nativa. A conclusão desta tese é dupla. Primeiramente, nós concluímos que um modelo de programação com dependências de dados pode ser eficiente em aceleradores, tais como GPUs e coprocessadores Intel Xeon Phi. Não obstante, uma ferramenta de programação com suporte a diferentes estratégias de escalonamento é essencial. Modelos de custo podem ser usados no contexto de algoritmos paralelos regulares, enquanto que o roubo de tarefas poder reagir a desbalanceamentos em tempo de execução. / In this thesis, we propose to study the issues of task parallelism with data dependencies on multicore architectures with accelerators. We target those architectures with the XKaapi runtime system developed by the MOAIS team (INRIA Rhône-Alpes). We first studied the issues on multi-GPU architectures for asynchronous execution and scheduling. Work stealing with heuristics showed significant performance results, but did not consider the computing power of different resources. Next, we designed a scheduling framework and a performance model to support scheduling strategies over XKaapi runtime. Finally, we performed experimental evaluations over the Intel Xeon Phi coprocessor in native execution. Our conclusion is twofold. First we concluded that data-flow task programming can be efficient on accelerators, which may be GPUs or Intel Xeon Phi coprocessors. Second, the runtime support of different scheduling strategies is essential. Cost models provide significant performance results over very regular computations, while work stealing can react to imbalances at runtime.
|
4 |
A runtime system for data-flow task programming on multicore architectures with accelerators / Uma ferramenta para programação com dependência de dados em arquiteturas multicore com aceleradores / Vers un support exécutif avec dépendance de données pour les architectures multicoeur avec des accélérateursLima, João Vicente Ferreira January 2014 (has links)
Dans cette thèse , nous proposons d’étudier des questions sur le parallélism de tâche avec dépendance de données dans le cadre de machines multicoeur avec des accélérateurs. La solution proposée a été développée en utilisant l’interface de programmation haute niveau XKaapi du projet MOAIS de l’INRIA Rhône-Alpes. D’abord nous avons étudié des questions liés à une approche d’exécution totalement asyncrone et l’ordonnancement par vol de travail sur des architectures multi-GPU. Le vol de travail avec localité de données a montré des résultats significatifs, mais il ne prend pas en compte des différents ressources de calcul. Ensuite nous avons conçu une interface et une modèle de coût qui permettent d’écrire des politiques d’ordonnancement sur XKaapi. Finalement on a évalué XKaapi sur un coprocesseur Intel Xeon Phi en mode natif. Notre conclusion est double. D’abord nous avons montré que le modèle de programmation data-flow peut être efficace sur des accélérateurs tels que des GPUs ou des coprocesseurs Intel Xeon Phi. Ensuite, le support à des différents politiques d’ordonnancement est indispensable. Les modèles de coût permettent d’obtenir de performance significatifs sur des calculs très réguliers, tandis que le vol de travail permet de redistribuer la charge en cours d’exécution. / Esta tese investiga os desafios no uso de paralelismo de tarefas com dependências de dados em arquiteturas multi-CPU com aceleradores. Para tanto, o XKaapi, desenvolvido no grupo de pesquisa MOAIS (INRIA Rhône-Alpes), é a ferramenta de programação base deste trabalho. Em um primeiro momento, este trabalho propôs extensões ao XKaapi a fim de sobrepor transferência de dados com execução através de operações concorrentes em GPU, em conjunto com escalonamento por roubo de tarefas em multi-GPU. Os resultados experimentais sugerem que o suporte a asincronismo é importante à escalabilidade e desempenho em multi-GPU. Apesar da localidade de dados, o roubo de tarefas não pondera a capacidade de processamento das unidades de processamento disponíveis. Nós estudamos estratégias de escalonamento com predição de desempenho em tempo de execução através de modelos de custo de execução. Desenvolveu-se um framework sobre o XKaapi de escalonamento que proporciona a implementação de diferentes algoritmos de escalonamento. Esta tese também avaliou o XKaapi em coprocessodores Intel Xeon Phi para execução nativa. A conclusão desta tese é dupla. Primeiramente, nós concluímos que um modelo de programação com dependências de dados pode ser eficiente em aceleradores, tais como GPUs e coprocessadores Intel Xeon Phi. Não obstante, uma ferramenta de programação com suporte a diferentes estratégias de escalonamento é essencial. Modelos de custo podem ser usados no contexto de algoritmos paralelos regulares, enquanto que o roubo de tarefas poder reagir a desbalanceamentos em tempo de execução. / In this thesis, we propose to study the issues of task parallelism with data dependencies on multicore architectures with accelerators. We target those architectures with the XKaapi runtime system developed by the MOAIS team (INRIA Rhône-Alpes). We first studied the issues on multi-GPU architectures for asynchronous execution and scheduling. Work stealing with heuristics showed significant performance results, but did not consider the computing power of different resources. Next, we designed a scheduling framework and a performance model to support scheduling strategies over XKaapi runtime. Finally, we performed experimental evaluations over the Intel Xeon Phi coprocessor in native execution. Our conclusion is twofold. First we concluded that data-flow task programming can be efficient on accelerators, which may be GPUs or Intel Xeon Phi coprocessors. Second, the runtime support of different scheduling strategies is essential. Cost models provide significant performance results over very regular computations, while work stealing can react to imbalances at runtime.
|
5 |
A Runtime System for Data-Flow Task Programming on Multicore Architectures with Accelerators / Vers un support exécutif avec dépendance de données pour les architectures multicoeur avec des accélérateurs / Uma Ferramenta para Programação com Dependência de Dados em Arquiteturas Multicore com AceleradoresLima, Joao Vicente Ferreira 05 May 2014 (has links)
Dans cette thèse , nous proposons d’étudier des questions sur le parallélism de tâcheavec dépendance de données dans le cadre de machines multicoeur avec des accélérateurs.La solution proposée a été développée en utilisant l’interface de programmation hauteniveau XKaapi du projet MOAIS de l’INRIA Rhône-Alpes.D’abord nous avons étudié des questions liés à une approche d’exécution totalementasyncrone et l’ordonnancement par vol de travail sur des architectures multi-GPU. Le volde travail avec localité de données a montré des résultats significatifs, mais il ne prend pasen compte des différents ressources de calcul. Ensuite nous avons conçu une interface etune modèle de coût qui permettent d’écrire des politiques d’ordonnancement sur XKaapi.Finalement on a évalué XKaapi sur un coprocesseur Intel Xeon Phi en mode natif.Notre conclusion est double. D’abord nous avons montré que le modèle de programma-tion data-flow peut être efficace sur des accélérateurs tels que des GPUs ou des coproces-seurs Intel Xeon Phi. Ensuite, le support à des différents politiques d’ordonnancement estindispensable. Les modèles de coût permettent d’obtenir de performance significatifs surdes calculs très réguliers, tandis que le vol de travail permet de redistribuer la charge encours d’exécution. / In this thesis, we propose to study the issues of task parallelism with data dependencies onmulticore architectures with accelerators. We target those architectures with the XKaapiruntime system developed by the MOAIS team (INRIA Rhône-Alpes).We first studied the issues on multi-GPU architectures for asynchronous execution andscheduling. Work stealing with heuristics showed significant performance results, but didnot consider the computing power of different resources. Next, we designed a schedulingframework and a performance model to support scheduling strategies over XKaapi runtime.Finally, we performed experimental evaluations over the Intel Xeon Phi coprocessor innative execution.Our conclusion is twofold. First we concluded that data-flow task programming canbe efficient on accelerators, which may be GPUs or Intel Xeon Phi coprocessors. Second,the runtime support of different scheduling strategies is essential. Cost models providesignificant performance results over very regular computations, while work stealing canreact to imbalances at runtime. / Esta tese investiga os desafios no uso de paralelismo de tarefas com dependências dedados em arquiteturas multi-CPU com aceleradores. Para tanto, o XKaapi, desenvolvidono grupo de pesquisa MOAIS (INRIA Rhône-Alpes), é a ferramenta de programação basedeste trabalho.Em um primeiro momento, este trabalho propôs extensões ao XKaapi a fim de sobre-por transferência de dados com execução através de operações concorrentes em GPU, emconjunto com escalonamento por roubo de tarefas em multi-GPU. Os resultados experimen-tais sugerem que o suporte a asincronismo é importante à escalabilidade e desempenho emmulti-GPU. Apesar da localidade de dados, o roubo de tarefas não pondera a capacidadede processamento das unidades de processamento disponíveis. Nós estudamos estratégiasde escalonamento com predição de desempenho em tempo de execução através de modelosde custo de execução. Desenvolveu-se um framework sobre o XKaapi de escalonamentoque proporciona a implementação de diferentes algoritmos de escalonamento. Esta tesetambém avaliou o XKaapi em coprocessodores Intel Xeon Phi para execução nativa.A conclusão desta tese é dupla. Primeiramente, nós concluímos que um modelo deprogramação com dependências de dados pode ser eficiente em aceleradores, tais comoGPUs e coprocessadores Intel Xeon Phi. Não obstante, uma ferramenta de programaçãocom suporte a diferentes estratégias de escalonamento é essencial. Modelos de custo podemser usados no contexto de algoritmos paralelos regulares, enquanto que o roubo de tarefaspoder reagir a desbalanceamentos em tempo de execução.
|
Page generated in 0.0541 seconds