• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Accès à l'information dans les grandes collections textuelles en langue arabe / Information access in large Arabic textual collections

El Mahdaouy, Abdelkader 16 December 2017 (has links)
Face à la quantité d'information textuelle disponible sur le web en langue arabe, le développement des Systèmes de Recherche d'Information (SRI) efficaces est devenu incontournable pour retrouver l'information pertinente. La plupart des SRIs actuels de la langue arabe reposent sur la représentation par sac de mots et l'indexation des documents et des requêtes est effectuée souvent par des mots bruts ou des racines. Ce qui conduit à plusieurs problèmes tels que l'ambigüité et la disparité des termes, etc.Dans ce travail de thèse, nous nous sommes intéressés à apporter des solutions aux problèmes d'ambigüité et de disparité des termes pour l'amélioration de la représentation des documents et le processus de l'appariement des documents et des requêtes. Nous apportons quatre contributions au niveau de processus de représentation, d'indexation et de recherche d'information en langue arabe. La première contribution consiste à représenter les documents à la fois par des termes simples et des termes complexes. Cela est justifié par le fait que les termes simples seuls et isolés de leur contexte sont ambigus et moins précis pour représenter le contenu des documents. Ainsi, nous avons proposé une méthode hybride pour l’extraction de termes complexes en langue arabe, en combinant des propriétés linguistiques et des modèles statistiques. Le filtre linguistique repose à la fois sur l'étiquetage morphosyntaxique et la prise en compte des variations pour sélectionner les termes candidats. Pour sectionner les termes candidats pertinents, nous avons introduit une mesure d'association permettant de combiner l'information contextuelle avec les degrés de spécificité et d'unité. La deuxième contribution consiste à explorer et évaluer les systèmes de recherche d’informations permettant de tenir compte de l’ensemble des éléments d’indexation (termes simples et complexes). Par conséquent, nous étudions plusieurs extensions des modèles existants de RI pour l'intégration des termes complexes. En outre, nous explorons une panoplie de modèles de proximité. Pour la prise en compte des dépendances de termes dans les modèles de RI, nous introduisons une condition caractérisant de tels modèle et leur validation théorique. La troisième contribution permet de pallier le problème de disparité des termes en proposant une méthode pour intégrer la similarité entre les termes dans les modèles de RI en s'appuyant sur les représentations distribuées des mots (RDMs). L'idée sous-jacente consiste à permettre aux termes similaires à ceux de la requête de contribuer aux scores des documents. Les extensions des modèles de RI proposées dans le cadre de cette méthode sont validées en utilisant les contraintes heuristiques d'appariement sémantique. La dernière contribution concerne l'amélioration des modèles de rétro-pertinence (Pseudo Relevance Feedback PRF). Étant basée également sur les RDM, notre méthode permet d'intégrer la similarité entre les termes d'expansions et ceux de la requête dans les modèles standards PRF. La validation expérimentale de l'ensemble des contributions apportées dans le cadre de cette thèse est effectuée en utilisant la collection standard TREC 2002/2001 de la langue arabe. / Given the amount of Arabic textual information available on the web, developing effective Information Retrieval Systems (IRS) has become essential to retrieve relevant information. Most of the current Arabic SRIs are based on the bag-of-words representation, where documents are indexed using surface words, roots or stems. Two main drawbacks of the latter representation are the ambiguity of Single Word Terms (SWTs) and term mismatch.The aim of this work is to deal with SWTs ambiguity and term mismatch. Accordingly, we propose four contributions to improve Arabic content representation, indexing, and retrieval. The first contribution consists of representing Arabic documents using Multi-Word Terms (MWTs). The latter is motivated by the fact that MWTs are more precise representational units and less ambiguous than isolated SWTs. Hence, we propose a hybrid method to extract Arabic MWTs, which combines linguistic and statistical filtering of MWT candidates. The linguistic filter uses POS tagging to identify MWTs candidates that fit a set of syntactic patterns and handles the problem of MWTs variation. Then, the statistical filter rank MWT candidate using our proposed association measure that combines contextual information and both termhood and unithood measures. In the second contribution, we explore and evaluate several IR models for ranking documents using both SWTs and MWTs. Additionally, we investigate a wide range of proximity-based IR models for Arabic IR. Then, we introduce a formal condition that IR models should satisfy to deal adequately with term dependencies. The third contribution consists of a method based on Distributed Representation of Word vectors, namely Word Embedding (WE), for Arabic IR. It relies on incorporating WE semantic similarities into existing probabilistic IR models in order to deal with term mismatch. The aim is to allow distinct, but semantically similar terms to contribute to documents scores. The last contribution is a method to incorporate WE similarity into Pseud-Relevance Feedback PRF for Arabic Information Retrieval. The main idea is to select expansion terms using their distribution in the set of top pseudo-relevant documents along with their similarity to the original query terms. The experimental validation of all the proposed contributions is performed using standard Arabic TREC 2002/2001 collection.
2

Relating Dependent Terms in Information Retrieval

Shi, Lixin 11 1900 (has links)
Les moteurs de recherche font partie de notre vie quotidienne. Actuellement, plus d’un tiers de la population mondiale utilise l’Internet. Les moteurs de recherche leur permettent de trouver rapidement les informations ou les produits qu'ils veulent. La recherche d'information (IR) est le fondement de moteurs de recherche modernes. Les approches traditionnelles de recherche d'information supposent que les termes d'indexation sont indépendants. Pourtant, les termes qui apparaissent dans le même contexte sont souvent dépendants. L’absence de la prise en compte de ces dépendances est une des causes de l’introduction de bruit dans le résultat (résultat non pertinents). Certaines études ont proposé d’intégrer certains types de dépendance, tels que la proximité, la cooccurrence, la contiguïté et de la dépendance grammaticale. Dans la plupart des cas, les modèles de dépendance sont construits séparément et ensuite combinés avec le modèle traditionnel de mots avec une importance constante. Par conséquent, ils ne peuvent pas capturer correctement la dépendance variable et la force de dépendance. Par exemple, la dépendance entre les mots adjacents "Black Friday" est plus importante que celle entre les mots "road constructions". Dans cette thèse, nous étudions différentes approches pour capturer les relations des termes et de leurs forces de dépendance. Nous avons proposé des méthodes suivantes: ─ Nous réexaminons l'approche de combinaison en utilisant différentes unités d'indexation pour la RI monolingue en chinois et la RI translinguistique entre anglais et chinois. En plus d’utiliser des mots, nous étudions la possibilité d'utiliser bi-gramme et uni-gramme comme unité de traduction pour le chinois. Plusieurs modèles de traduction sont construits pour traduire des mots anglais en uni-grammes, bi-grammes et mots chinois avec un corpus parallèle. Une requête en anglais est ensuite traduite de plusieurs façons, et un score classement est produit avec chaque traduction. Le score final de classement combine tous ces types de traduction. Nous considérons la dépendance entre les termes en utilisant la théorie d’évidence de Dempster-Shafer. Une occurrence d'un fragment de texte (de plusieurs mots) dans un document est considérée comme représentant l'ensemble de tous les termes constituants. La probabilité est assignée à un tel ensemble de termes plutôt qu’a chaque terme individuel. Au moment d’évaluation de requête, cette probabilité est redistribuée aux termes de la requête si ces derniers sont différents. Cette approche nous permet d'intégrer les relations de dépendance entre les termes. Nous proposons un modèle discriminant pour intégrer les différentes types de dépendance selon leur force et leur utilité pour la RI. Notamment, nous considérons la dépendance de contiguïté et de cooccurrence à de différentes distances, c’est-à-dire les bi-grammes et les paires de termes dans une fenêtre de 2, 4, 8 et 16 mots. Le poids d’un bi-gramme ou d’une paire de termes dépendants est déterminé selon un ensemble des caractères, en utilisant la régression SVM. Toutes les méthodes proposées sont évaluées sur plusieurs collections en anglais et/ou chinois, et les résultats expérimentaux montrent que ces méthodes produisent des améliorations substantielles sur l'état de l'art. / Search engine has become an integral part of our life. More than one-third of world populations are Internet users. Most users turn to a search engine as the quick way to finding the information or product they want. Information retrieval (IR) is the foundation for modern search engines. Traditional information retrieval approaches assume that indexing terms are independent. However, terms occurring in the same context are often dependent. Failing to recognize the dependencies between terms leads to noise (irrelevant documents) in the result. Some studies have proposed to integrate term dependency of different types, such as proximity, co-occurrence, adjacency and grammatical dependency. In most cases, dependency models are constructed apart and then combined with the traditional word-based (unigram) model on a fixed importance proportion. Consequently, they cannot properly capture variable term dependency and its strength. For example, dependency between adjacent words “black Friday” is more important to consider than those of between “road constructions”. In this thesis, we try to study different approaches to capture term relationships and their dependency strengths. We propose the following methods for monolingual IR and Cross-Language IR (CLIR): We re-examine the combination approach by using different indexing units for Chinese monolingual IR, then propose the similar method for CLIR. In addition to the traditional method based on words, we investigate the possibility of using Chinese bigrams and unigrams as translation units. Several translation models from English words to Chinese unigrams, bigrams and words are created based on a parallel corpus. An English query is then translated in several ways, each producing a ranking score. The final ranking score combines all these types of translations. We incorporate dependencies between terms in our model using Dempster-Shafer theory of evidence. Every occurrence of a text fragment in a document is represented as a set which includes all its implied terms. Probability is assigned to such a set of terms instead of individual terms. During query evaluation phase, the probability of the set can be transferred to those of the related query, allowing us to integrate language-dependent relations to IR. We propose a discriminative language model that integrates different term dependencies according to their strength and usefulness to IR. We consider the dependency of adjacency and co-occurrence within different distances, i.e. bigrams, pairs of terms within text window of size 2, 4, 8 and 16. The weight of bigram or a pair of dependent terms in the final model is learnt according to a set of features. All the proposed methods are evaluated on several English and/or Chinese collections, and experimental results show these methods achieve substantial improvements over state-of-the-art baselines.

Page generated in 0.0855 seconds