Spelling suggestions: "subject:"détection dde lla peak"" "subject:"détection dde lla peu""
1 |
Modèles probabilistes indexés par les arbres : application à la détection de la peau dans les images couleur / Tree probability distribution : applictaion to skin detection in color imagesFkihi, Sanaa El 20 December 2008 (has links)
La détection de la peau constitue une phase primordiale de prétraitement dans plusieurs applications telles que la vidéo surveillance et le filtrage d'Internet. Toutefois, c'est une tâche difficile à accomplir étant donné la diversité des couleurs de la peau et la variété des conditions de prise de vue. Dans l'objectif de surmonter ces dernières contraintes, nos travaux de thèse consistent à définir un modèle robuste de la distribution de la peau capable de différencier les pixels de peau de ceux de non-peau dans des images variées. Notre modélisation est fondée sur le concept des modèles graphiques probabilistes connus par leur intuitivité et efficacité pour la représentation d'une distribution jointe de probabilités sur un ensemble de variables aléatoires, plus particulièrement les arbres indexant des probabilités. En vue de définir le modèle de l'arbre idéal indexant la distribution de la peau, nous avons proposé trois approches différentes : le modèle d'arbre de dépendances à b probabilité peau et non peau, le modèle de mélange des arbres et celui de leur combinaison. Le modèle d'arbre de dépendances à bi-probabilité peau et non peau proposé, exploite les propriétés d'interclasse et d'intra classe entre les deux classes peau et non peau ainsi que les interactions entre un pixel et ses voisins que nous traduisons par un arbre de dépendance optimal. L'arbre élaboré est un arbre idéal unique indexant conjointement les distributions de probabilités peau et non peau. Le modèle de mélange des arbres est proposé pour remédier à la multiplicité des arbres de dépendances optimaux possibles sur un graphe. L'entité du mélange proposée concerne aussi bien les structures des arbres considérés que les probabilités portées par ces dernières. Ainsi, l'arbre idéal indexant probabilité peau est l'arbre résultant du mélange portant la probabilité du mélange. Quant au modèle de combinaison des arbres élaboré, il constitue une approche alternative au mélange proposé visant l'exploitation des différent informations emmagasinées dans les différents arbres de dépendances optimaux possibles. Un fondement théorique est présenté dans cette thèse pour déterminer la meilleure approche à adopter, le mélange des arbres ou la combinaison des arbres, et ce en fonction des arbres de dépendances optimaL considérés. Les expérimentations réalisées sur la base Compaq montrent l'efficacité et la faisabilité de nos approches. En outre, des études comparatives entre n< modèles de peau et l'existant prouvent qu'en termes de qualité et de quantité des résultats obtenus, les modèles proposés permettent de discriminer les pixels de peau et ceux de non peau dans des images couleurs variées. / Skin detection or segmentation is considered as an important preliminary process in a number of existing systems ranging over face detection, filtering Internet images, and diverse human interaction areas. Nevertheless, there are two skin segmentation challenges: the pattern variability and the scene complexity. This thesis is devoted to define a new approach for modeling the skin probability distribution. ln the aim of dealing with the skin detection problem, we investigate the models of probability trees to approximate skin and non-skin probabilities. These models can represent a joint distribution in an intuitive and efficient way. Hence, we have proposed three main approaches to seek a perfect tree model estimating the skin probability distribution: (1) the model of dependency tree that approximates the skin and the non skin probability distribution together, (2) the mixture of trees' model, and (3) the combination of trees' model. The first proposed model is based on the optimal spanning tree principle combined to an appropriate relevant criterion that we have defined. The contribution takes into account both the interclass and the intra class between skin and non skin classes, and the interactions between a given pixel and its neighbors. The rationale behind proposing the second model is that in sorne cases the approximation of true class probability given by an optimal spanning tree (OST) is not unique and might be chosen randomly, while this model will take the advantages of the useful information represented on each OST. The mixture of trees' model consists in mixing the structures of the OSTs and their probabilities with the aim of seeking a perfect spanning tree. This latter emphasizes the dependencies' degrees of data, and approximates effectively the true probability distribution. Finally, the third model is defined to deal with a particular kind of multiple OSTs. This model is a parallel combination of different classifiers based on the OSTs. A mathematical theory, proving and specifying the appropriate approach to be used (mixture of trees or combination of trees) depending on the considered OSTs' kind, is presented in this thesis. In addition to experimental results, on the Compaq database, showing the effectiveness and the high reliability of our three approaches.
|
2 |
Modèles probabilistes indexés par les arbres : application à la détection de la peau dans les images couleurEl Fkihi, Sanaa 20 December 2008 (has links) (PDF)
La détection de la peau constitue une phase primordiale de prétraitement dans plusieurs applications telles que la vidéo surveillance et le filtrage d'Internet. Toutefois, c'est une tâche difficile à accomplir étant donné la diversité des couleurs de la peau et la variété des conditions de prise de vue. Dans l'objectif de surmonter ces dernières contraintes, nos travaux de thèse consistent à définir un modèle robuste de la distribution de la peau capable de différencier les pixels de peau de ceux de non-peau dans des images variées. Notre modélisation est fondée sur le concept des modèles graphiques probabilistes connus par leur intuitivité et efficacité pour la représentation d'une distribution jointe de probabilités sur un ensemble de variables aléatoires, plus particulièrement les arbres indexant des probabilités. En vue de définir le modèle de l'arbre idéal indexant la distribution de la peau, nous avons proposé trois approches différentes : le modèle d'arbre de dépendances à b probabilité peau et non peau, le modèle de mélange des arbres et celui de leur combinaison. Le modèle d'arbre de dépendances à bi-probabilité peau et non peau proposé, exploite les propriétés d'interclasse et d'intra classe entre les deux classes peau et non peau ainsi que les interactions entre un pixel et ses voisins que nous traduisons par un arbre de dépendance optimal. L'arbre élaboré est un arbre idéal unique indexant conjointement les distributions de probabilités peau et non peau. Le modèle de mélange des arbres est proposé pour remédier à la multiplicité des arbres de dépendances optimaux possibles sur un graphe. L'entité du mélange proposée concerne aussi bien les structures des arbres considérés que les probabilités portées par ces dernières. Ainsi, l'arbre idéal indexant probabilité peau est l'arbre résultant du mélange portant la probabilité du mélange. Quant au modèle de combinaison des arbres élaboré, il constitue une approche alternative au mélange proposé visant l'exploitation des différent informations emmagasinées dans les différents arbres de dépendances optimaux possibles. Un fondement théorique est présenté dans cette thèse pour déterminer la meilleure approche à adopter, le mélange des arbres ou la combinaison des arbres, et ce en fonction des arbres de dépendances optimaL considérés. Les expérimentations réalisées sur la base Compaq montrent l'efficacité et la faisabilité de nos approches. En outre, des études comparatives entre n< modèles de peau et l'existant prouvent qu'en termes de qualité et de quantité des résultats obtenus, les modèles proposés permettent de discriminer les pixels de peau et ceux de non peau dans des images couleurs variées.
|
3 |
Une technique de relaxation pour la mise en correspondance d'images: Application à la reconnaissance d'objets et au suivi du visage.Sidibe, Dro Désiré 07 December 2007 (has links) (PDF)
Le principal intérêt de l'utilisation des invariants locaux pour la mise en correspondance de différentes vues d'une même scène est le caractère local qui les rend robustes aux occultations et aux changements de point de vue et d'échelle. Néanmoins, cette localité limite le pouvoir discriminant des descripteurs locaux qui échouent dans les cas dificiles où l'ambiguité est élevée. Dans une première partie, nous proposons une méthode de mise en correspondance basée sur la relaxation qui prend en compte une information plus globale, dite contextuelle, afin de garantir des résultats corrects même dans les cas les plus dificiles. Nous présentons une application dans le cadre de la reconnaissance d'objets dans des scènes complexes. Dans une seconde partie, nous abordons le problème de la détection et du suivi du visage dans une séquence d'image. Nous proposons une méthode simple et eficace pour la détection du visage dans une image couleur, et nous montrons comment l'algorithme de mise en correspondance peut être utilisé pour suivre eficacement le visage dans une séquence d'images.
|
4 |
Traitement des objets 3D et images par les méthodes numériques sur graphes / 3D object processing and Image processing by numerical methodsEl Sayed, Abdul Rahman 24 October 2018 (has links)
La détection de peau consiste à détecter les pixels correspondant à une peau humaine dans une image couleur. Les visages constituent une catégorie de stimulus importante par la richesse des informations qu’ils véhiculent car avant de reconnaître n’importe quelle personne il est indispensable de localiser et reconnaître son visage. La plupart des applications liées à la sécurité et à la biométrie reposent sur la détection de régions de peau telles que la détection de visages, le filtrage d'objets 3D pour adultes et la reconnaissance de gestes. En outre, la détection de la saillance des mailles 3D est une phase de prétraitement importante pour de nombreuses applications de vision par ordinateur. La segmentation d'objets 3D basée sur des régions saillantes a été largement utilisée dans de nombreuses applications de vision par ordinateur telles que la correspondance de formes 3D, les alignements d'objets, le lissage de nuages de points 3D, la recherche des images sur le web, l’indexation des images par le contenu, la segmentation de la vidéo et la détection et la reconnaissance de visages. La détection de peau est une tâche très difficile pour différentes raisons liées en général à la variabilité de la forme et la couleur à détecter (teintes différentes d’une personne à une autre, orientation et tailles quelconques, conditions d’éclairage) et surtout pour les images issues du web capturées sous différentes conditions de lumière. Il existe plusieurs approches connues pour la détection de peau : les approches basées sur la géométrie et l’extraction de traits caractéristiques, les approches basées sur le mouvement (la soustraction de l’arrière-plan (SAP), différence entre deux images consécutives, calcul du flot optique) et les approches basées sur la couleur. Dans cette thèse, nous proposons des méthodes d'optimisation numérique pour la détection de régions de couleurs de peaux et de régions saillantes sur des maillages 3D et des nuages de points 3D en utilisant un graphe pondéré. En se basant sur ces méthodes, nous proposons des approches de détection de visage 3D à l'aide de la programmation linéaire et de fouille de données (Data Mining). En outre, nous avons adapté nos méthodes proposées pour résoudre le problème de la simplification des nuages de points 3D et de la correspondance des objets 3D. En plus, nous montrons la robustesse et l’efficacité de nos méthodes proposées à travers de différents résultats expérimentaux réalisés. Enfin, nous montrons la stabilité et la robustesse de nos méthodes par rapport au bruit. / Skin detection involves detecting pixels corresponding to human skin in a color image. The faces constitute a category of stimulus important by the wealth of information that they convey because before recognizing any person it is essential to locate and recognize his face. Most security and biometrics applications rely on the detection of skin regions such as face detection, 3D adult object filtering, and gesture recognition. In addition, saliency detection of 3D mesh is an important pretreatment phase for many computer vision applications. 3D segmentation based on salient regions has been widely used in many computer vision applications such as 3D shape matching, object alignments, 3D point-point smoothing, searching images on the web, image indexing by content, video segmentation and face detection and recognition. The detection of skin is a very difficult task for various reasons generally related to the variability of the shape and the color to be detected (different hues from one person to another, orientation and different sizes, lighting conditions) and especially for images from the web captured under different light conditions. There are several known approaches to skin detection: approaches based on geometry and feature extraction, motion-based approaches (background subtraction (SAP), difference between two consecutive images, optical flow calculation) and color-based approaches. In this thesis, we propose numerical optimization methods for the detection of skins color and salient regions on 3D meshes and 3D point clouds using a weighted graph. Based on these methods, we provide 3D face detection approaches using Linear Programming and Data Mining. In addition, we adapted our proposed methods to solve the problem of simplifying 3D point clouds and matching 3D objects. In addition, we show the robustness and efficiency of our proposed methods through different experimental results. Finally, we show the stability and robustness of our methods with respect to noise.
|
5 |
Algorithmes multidimensionnels et multispectraux en Morphologie Mathématique : approche par méta-programmation.Enficiaud, Raffi 26 February 2007 (has links) (PDF)
Au cours de ces travaux de thèse, nous nous sommes intéressés d'un point de vue global aux algorithmes en Traitement d'Image et plus particulièrement en Morphologie Mathématique, selon certaines techniques nouvelles de programmation. L'évolution matérielle des moyens informatiques suit les prédictions de la loi de Moore. Cependant, une évolution parallèle, d'ordre logicielle, met à la disposition de la recherche scientifique des moyens de programmation nouveaux, dont la méta-programmation. Les avantages sont considérables, tant en terme scientifique par les possibilités offertes, qu'en termes simplement pratiques (portabilité, capitalisation des développements, réduction des erreurs, etc.). La présentation des travaux est structurée autour de la conception d'une bibliothèque de traitement - morphologique - d'image. Les différents aspects sont illustrés en partie par des exemples pris dans les domaines de la vidéosurveillance et de la sécurité automobile, et issus de projets industriels. Nous présentons dans un premier temps le cadre informatique utilisé pour l'écriture algorithmique. Afin de rendre efficace l'utilisation des nouvelles techniques de programmation, une étude préalable des notions mathématiques en Morphologie Mathématique - images, graphes, relations d'ordre, voisinages, éléments structurant, ... -, ainsi que des outils informatiques associés, est réalisée. La séparation correcte des rôles permet en outre l'écriture des structures indépendamment de la nature des données qu'ils contiennent, l'automatisation de nombreuses opérations par le compilateur, et une écriture algorithmique fidèle à une formulation mathématique. La conjonction de ces développements ouvre un grand champ d'exploration comme celui émanant des images nD et hyperspectrales, dont nous nous proposons d'explorer certains aspects. Le support des images nD associé à la programmation générique a sollicité le développement d'un algorithme de transformée exacte en distance. Les hypothèses sur la fonction distance sont faibles (homogénéité dans l'espace et convexité de la boule unité associée) afin d'utiliser les mêmes développements pour une large classe de fonction. Suite à une étude théorique, nous proposons un algorithme de calcul basé sur des propagations. Le même algorithme est utilisé pour l'ensemble des illustrations (fonctions de distance - L2, L5, orienté, non isométrique, ... - sur des images 4D). Les transformées morphologiques en distance sont d'approche totalement différente et d'usage courant en morphologie mathématique. Elles connaissent actuellement de nouveaux développements grâce à l'extension numérique proposée par Beucher: les « quasi-distances ». Nous proposons un algorithme de calcul rapide de ces distances. La couleur et plus généralement les images multispectrales (données vectorielles) sont d'une manipulation délicate en morphologie mathématique. Nous présentons trois approches complémentaires: l'utilisation de métriques couleurs, des statistiques locales et enfin les relations d'ordre lexicographique. Notre cadre informatique et algorithmique est parfaitement adapté à ces trois types de traitement. Le cadre métrique permet d'étendre la définition du gradient morphologique aux espaces couleurs, et plusieurs métriques dans Lab et HLS sont envisagées. Cette formulation est cependant coûteuse en termes de calcul et devient impraticable lorsque le voisinage utilisé pour le gradient s'agrandit. L'usage de statistiques locales permet de contourner ce problème. Nous nous sommes particulièrement intéressés à des statistiques circulaires dans HLS, ce qui nous a amené à la définition d'un gradient chromatique dans cet espace. Enfin, l'utilisation de relation d'ordre lexicographique étend le cadre algébrique classique à la couleur, sans modification fondamentale des algorithmes. Dans cette optique, nous verrons quels sont les moyens à notre disposition pour étendre la plupart des opérateurs (extrema, reconstruction, granulométries, ...) en maintenant un coût de développement bas. Deux études illustrent ces développements : la caractérisation chromatique de la peau, robuste aux changements d'illumination (contexte automobile), et la détection des zones de mouvement (vidéosurveillance). Le dernier sujet d'intérêt concerne la segmentation, et plus particulièrement l'algorithme de ligne de partage des eaux. L'implémentation de référence à l'aide de files d'attente hiérarchiques conduit à certains biais que nous corrigeons. L'algorithme proposé étant générique, nous l'appliquons sur des images de dimension 4, sur des reliefs en précision flottante ou couleur. Nous modifions ensuite la construction des bassins versants de manière à contourner certaines difficultés rencontrées lors de la segmentation avec un nombre faible de marqueurs. La première modification injecte dans le processus de propagation une information extérieure exprimée sous forme de fonction de coût. Cette fonction concerne aussi bien le contour que l'intérieur de la région en cours de construction. La seconde modification utilise une contrainte locale et rend le fluide visqueux. Des analogies sont établies entre ces nouvelles propagations et les équations d'évolution de courbe à l'aide de dérivées partielles.
|
Page generated in 0.1222 seconds