Spelling suggestions: "subject:"développement perturbation"" "subject:"développement perturbations""
1 |
Sur une anomalie du développement perturbatif de la théorie de Chern-Simons / On an anomaly of the perturbative expansion of Chern-Simons theoryCorbineau, Kévin 21 October 2016 (has links)
Maxim Kontsevich a défini un invariant $Z$ des sphères d'homologie rationnelle orientées de dimension $3$ en 1992, en poursuivant l'étude initiée par Edward Witten du développement perturbatif de la théorie de Chern-Simons.L'invariant $Z$ de Kontsevich est gradué. Il s'écrit $Z=(Z_n)_{nin NN }$, où $Z_n$ prend ses valeurs dans un espace $CA_n$ engendré par des diagrammes trivalents à $2n$ sommets appelésdiagrammes de Feynman-Jacobi de degré $n$.L'invariant $Z$ apparait d'abord comme un invariant $Z(M,tau)$ des sphères d'homologie rationnelle $M$ de dimension $3$ munies d'une parallélisation $tau$.Il est l'exponentielle d'un invariant $z(M,tau)=(z_n(M,tau))_{nin NN }$dont la partie de degré $n$ compte algébriquement les plongements des diagrammes de Feynman-Jacobi connexes à $2n$ sommets assujettis à vérifier certaines conditions.On peut associer un invariant homotopique entier $p_1(tau)$ aux parallélisations $tau$ des variétés orientées de dimension $3$, et il existe un élément $beta=(beta_n)_{nin NN}$ de $CA_n$ appelé anomalie tel que$$z_n(M,tau)-p_1(tau)beta_n$$ soit indépendant de $tau$ et noté $z_n(M)$.$$Z(M)=expleft((z_n(M))_{nin NN}right).$$On sait depuis l'introduction de cette constante par Greg Kuperberg et Dylan Thurston en 1999 que $beta_n=0$ si $n$ est pair et que $beta_1 neq 0$.Cette thèse porte sur le calcul de la première valeur inconnue $beta_3$. Elle en présente des expressions très simplifiées et implémentables sur ordinateur. / The Kontsevich invariant $Z$ of rational homology $3-$ sphere was constructed by Maxim Kontsevich in 1992 using configuration space integrals.This invariant is graduated. It can be written as $Z=(Z_n)_{nin NN}$, where $Z_n$ values in the space $mathcal{A}_n$ of jacobi diagram with order $n$. A Jacobi diagram with order $n$ is a trivalent graph with $2n$ vertices. At a first point, we can see $Z$ as an invariant $Z(M,tau)$ of rational homology $3-$spheres equipped with a trivialisation $tau$ so that $Z$ is the exponential of an invariant $z(M,tau)=(z_n(M,tau))_{ninNN}$. In fact, we can say that $z_n(M,tau)$ counts the number of embeddings of connected jacobi diagrams with order $n$ with some additionnal conditions. We can associate an homotopic integer invariant $p_1(tau)$ to each trivialisation $tau$ of oriented $3-$manifolds and it exists $beta=(beta_n)_{ninNN}$, where $beta_ninmathcal{A}_n$ that is called anomaly so that $$z_n(M,tau) - p_1(tay)$$ is independant of $tau$. We name it $z_n(M)$ and $$Z(M)=exp((z_n(M)_{nin NN})).$$Greg Kuperberg and Dylan Thurston introduced this constant in 1999. We already know that $beta_n=0$ if $n$ is even and $beta_1neq 0$. This thesis is about the computation of $beta_3$. It describes simplified expressions of $beta_3$, and this expressions can be compute with a computer.
|
2 |
Fonctions de corrélation en théorie des champs à température finie : aspects <br />formels et applications au plasma de quarks et de gluonsGelis, François 10 December 1998 (has links) (PDF)
Le cadre général de cette thèse est la théorie des champs à température finie, et plus particulièrement le calcul perturbatif<br />des fonctions de Green thermiques. Dans une première partie sont considérés trois problèmes plutôt en relation avec le<br />formalisme lui-même. Après deux chapitres introductifs destinés à mettre en place le cadre et les notations utilisées par la<br />suite, un chapitre est dédié à clarifier certains aspects de la justification des règles de Feynman du formalisme à temps réel.<br />Ensuite, je m'intéresse dans le chapitre 4 au problème des règles de coupure dans les formalismes à temps réel. En<br />particulier, outre la résolution d'une controverse à ce sujet, je donne les règles de coupure à utiliser dans la version<br />``retardée-avancée'' de ce formalisme. Enfin, le dernier problème abordé dans la première partie est celui de la désintégration<br />du pion en deux photons dans un environnement thermique. J'y montre que les contradictions existant dans la littérature à ce<br />sujet sont dues à certaines propriétés analytiques des fonctions de Green thermiques. La deuxième partie concerne le calcul<br />du taux de production de photons ou de paires de leptons (photons virtuels) par un plasma de quarks et de gluons. Le cadre<br />de ce travail est la réorganisation du développement perturbatif obtenue par la sommation des diagrammes connus sous le<br />nom de boucles dures. Le premier volet de cette étude concerne la production de photons virtuels où l'on montre que des<br />contributions importantes arrivent à deux boucles et complètent le résultat déjà connu à une boucle. L'autre volet est la<br />production de photons réels, pour lesquels on montre que des divergences colinéaires extrêmement fortes rendent les<br />contributions à deux boucles largement dominantes devant les contributions à une boucle. Dans les deux cas, le phénomène<br />observé peut être interprété comme des insuffisances de l'approximation qui conduit aux boucles dures.
|
3 |
Jamming and glass transition in mean-field theories and beyond / Jamming e transizione vetrosa in teorie di campo medio ed oltre / Transition vitreuse et de jamming en théories de champ moyen et au-delàAltieri, Ada 06 February 2018 (has links)
La description détaillée des systèmes désordonnés et vitreux représente un défi central en physique statistique et de la matière condensée, puisqu'à ce jour il n'existe pas de théorie unique et établie permettant de comprendre ces systèmes, pourtant omniprésents.Ce travail de recherche est lié en particulier à l'étude des matériaux vitreux à basse température. Plus précisément, si l'on considère des systèmes formés par un ensemble de particules athermiques avec des interactions répulsives de portée finie, en augmentant la densité, on peut observer une transition dite d'encombrement ("jamming"). Celle-ci consiste en un blocage des degrés de liberté accompagné par une augmentation spectaculaire de la rigidité du matériau.Nous étudierons ce problème à l’aide d’une analogie formelle entre des modèles de sphères et le perceptron, un modèle théorique qui développe une transition d'encombrement et des phénomènes de frustration typiques des systèmes désordonnés.En tant que modèle en champ moyen, il permet d'obtenir des résultats analytiques précis et généralisables à des systèmes à haute dimension.L'enjeu majeur de cette étude est de reconstruire le spectre des modes de vibration et toutes les propriétés pertinentes d'une phase spécifique (correspondant au régime dit des sphères dures).Dans ce cadre, nous dériverons le potentiel effectif en fonction des paramètres d'ordre du modèle et nous montrerons qu'il est dominé à proximité du point de jamming par une interaction logarithmique non triviale, qui clarifiera le lien entre les forces de contact et les distances moyennes entre les particules, dans la région critique et au-delà.Comprendre pleinement la transition d'encombrement et les propriétés du perceptron nous permettra de faire des progrès dans plusieurs domaines reliés. En premier lieu, cela peut conduire à une théorie complète des systèmes amorphes, à la fois en dimension infinie et en dimension finie.De plus, le modèle du perceptron semble avoir un lien étroit avec des problèmes dits de Von Neumann. En effet, les systèmes biologiques et écologiques développent souvent des propriétés liées à une condition pseudo-critique en mettant en oeuvre des mécanismes d'optimisation de ressource-consommation.Est-il possible d'identifier un régime caractérisé par une brisure de symétrie? Quel serait le spectre de fluctuations d'énergie dans ces systèmes?Ce ne sont que quelques-unes des questions auxquelles nous essayerons de répondre dans cette thèse.Cependant, l'approximation de champ moyen peut parfois fournir des informationsincorrectes ou trompeuses, en particulier dans l'étude de certaines transitions de phase et la détermination des dimensions critiques inférieure et supérieure.Afin d'avoir une vue d'ensemble et pouvoir manipuler correctement des systèmes en dimension finie, dans la suite de la thèse nous discuterons comment obtenir un développement perturbatif systématique, applicable à tout modèle, à condition que ce dernier soit défini sur un réseau ou un graphe biparti.Notre motivation est en particulier liée à la possibilité d'étudier certaines transitions de phase du second ordre qui existent sur le réseau de Bethe - c'est-à-dire un réseau en arbre sans boucles dont chaque noeud a une connectivité fixe - mais qui sont qualitativement différentes ou absentes dans le modèle entièrement connecté correspondant. / The detailed description of disordered and glassy systems represents an open problem in statistical physics and condensed matter. As yet, there is no single, well-established theory allowing to understand such systems. The research presented in this thesis is related in particular to the study of glassy materials in the low-temperature regime. More precisely, considering systems formed by athermal particles subject to repulsive short-range interactions, upon progressively increasing the density, a so-called jamming transition can be detected. It entails a freezing of the degrees of freedom and hence a huge increase of the material rigidity.We shall study this problem in view of a formal analogy between sphere models and the perceptron, a theoretical model undergoing a jamming transition and frustration phenomena typical of disordered systems. Being a mean-field model, it allows to obtain exact analytical results, which are generalizable to more complex high-dimensional settings.The main aim is to reconstruct the vibrational spectrum and all the relevant properties of a specific phase of the perceptron, corresponding to the hard-sphere regime.In this framework, we will derive the effective potential as a function of the gaps between and forces among the particles, and we will show that it is dominated by a non-trivial logarithmic interaction near the jamming point. This interaction in turn will clarify the relations existing between the relevant variables of the system, in the critical jamming region and beyond.Understanding the jamming transition and the perceptron properties will allow us to make progress in several related fields. First, this study could lay part of the groundwork towards a complete theory of amorphous systems, in both infinite and finite dimensions. Furthermore, the perceptron model seems to a have a close connection with the so-called Von Neumann problems. Indeed, biological and ecological systems often develop pseudo-critical properties and give rise to general mechanisms of resource-consumption optimisation.Is the identification of a broken symmetry regime possible? What would it yield in terms of the spectrum of the energy fluctuations?These are just a few questions we shall attempt to answer in this context.However, the mean-field approximation can sometimes provide wrong or misleading information, especially in studying certain phase transitions and determining the exact lower and upper critical dimensions. To have a broad perspective and correctly deal with finite-dimensional systems, in the second part of the thesis we will discuss obtaining a systematic perturbative expansion which can be applied to any model, as long as defined on a lattice or a bipartite graph.Our motivation is in particular due to the possibility of studying relevant second-order phase transitions which exist on the Bethe lattice — a lattice with a locally tree-like structure and fixed connectivity for each node — but which are qualitatively different or absent in the corresponding fully-connected version.
|
Page generated in 0.067 seconds