• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hypotheses and Predictions in Biology Research and Education: An Investigation of Contemporary Relevance

Anupriya S. Karippadath (5930693) 26 April 2023 (has links)
<p>The process of scientific inquiry is critical for students to understand how knowledge is developed and validated. Representations of the process of inquiry have varied over time, from simple to complex, but some concepts are persistent – such as the concept of a scientific hypothesis. Current guidelines for undergraduate biology education prioritize developing student competence in generating and evaluating hypotheses but fail to define the concept and role of hypotheses. The nature of science literature points to the hypothetico-deductive method of inquiry originated by Karl Popper as a widely accepted conception of scientific hypotheses. Popper characterized a hypothesis as a falsifiable explanation of observed phenomena deduced from previously established knowledge. Alongside hypotheses, Popper also emphasizes the role of predictions, which are logically derived from hypotheses and characterized as testable expectations regarding the outcomes of an experiment or study. Together, hypotheses and predictions are thought to provide a framework for establishing rigorous conclusions in scientific studies. However, the absence of explicit definitions of hypotheses, or predictions, in guidelines and assessment for biology higher education makes it difficult to determine the current relevance of this perspective on hypotheses and predictions in teaching and learning. This leaves us with an unanswered question – what do biology undergraduate students need to know about scientific hypotheses? We addressed this question over three studies each investigating conceptions of scientific hypotheses, and the related concept of predictions, in a different context – (a) contemporary biology research communications, (b) a case study of biology faculty, graduate teaching assistants, and undergraduate students at a single institution, and (c) a national survey of biology faculty members. We found that the terms “hypothesis” and “prediction” used in varied ways in biology research communication and, most notably, often not connected with each other. We also found variation in conceptions of both hypothesis and prediction among faculty members, both in our case study and in the national survey. Our results indicate that faculty members did not always distinguish between the terms hypothesis and prediction in research or teaching or approach them the same way in research contexts. However, they had largely consistent ideas of the underlying reasoning connecting these concepts to each other and to scientific inquiry. Among graduate teaching assistants and undergraduate students in the case study, we found variation in conceptions of both hypotheses and predictions that was different from conceptions held by faculty members. Both graduate teaching assistants and undergraduate students often did not connect the two concepts in terms of underlying reasoning. Overall, our results indicate that there are some misalignments between students’ and instructors’ conceptions of hypotheses and predictions and their role in inquiry. We further discuss these findings in the context of teaching implications for undergraduate biology.</p>
2

The effects on student knowledge and engagement when using a culturally responsive framework to teach ASTR 101

Lee, Annette January 2020 (has links)
Philosophiae Doctor - PhD / The U.S. has a problem: it is not effectively utilizing all the bright young minds available to its science & engineering workforce. In 2012 the President’s Council of Advisors on Science and Technology (PCAST) reported that a million more STEM professionals in the U.S. workforce were needed over the next decade. PCAST reported that the situation is far worse for underrepresented students, who make up 70% of undergraduate students but only 45% of the STEM degrees. Recent reports suggest women in science and engineering have made small gains, while historically underrepresented ethnic groups (Blacks, Hispanics, American Indians) continue to be significantly underrepresented. The lack of diversity in the U.S. workforce is not reflected in the USA population nor is it reflected in the undergraduate student population. As the U.S. aspires to retain a leadership role in research and development in an increasingly diverse and globally interconnected society, this disparity is unsustainable. What if having more culturally interesting, more culturally responsive STEM classes is a way of increasing the diversity of the science and engineering workforce in the U.S.? This study focuses on a topic that has been generally overlooked by the STEM educational community, but one that is directly relevant to student engagement and learning outcomes: the role of culture as a variable in student learning. This study examines how different pedagogical approaches shape student outcomes in Astronomy 101 courses. In a comparative study two different pedagogical approaches were analyzed using both quantitative and qualitative methods in a semiexperimental nonequivalent group research design. The theories of culturally responsive pedagogy (CRP), active learning theory in STEM, and Indigenous knowledge systems (IKS) ground this approach. The findings of this study show important gains for all students. Underrepresented minority students (URM) in the course with increased culturally responsive pedagogy were exceptionally engaged and learning gains soared. By measure of the concept inventory, the URM students in the course with increased culturally responsive pedagogy outperformed all other students in the study. As the U.S. will have a non-white majority by the year 2045 and diversity in STEM faculty lags there is a need for tangible, evidence-based, culture-based curriculum and pedagogy. There is a problem and based on the evidence found in this study, there is a way to fix it. / The U.S. has a problem: it is not effectively utilizing all the bright young minds available to its science & engineering workforce. In 2012 the President’s Council of Advisors on Science and Technology (PCAST) reported that a million more STEM professionals in the U.S. workforce were needed over the next decade. PCAST reported that the situation is far worse for underrepresented students, who make up 70% of undergraduate students but only 45% of the STEM degrees. Recent reports suggest women in science and engineering have made small gains, while historically underrepresented ethnic groups (Blacks, Hispanics, American Indians) continue to be significantly underrepresented. The lack of diversity in the U.S. workforce is not reflected in the USA population nor is it reflected in the undergraduate student population. As the U.S. aspires to retain a leadership role in research and development in an increasingly diverse and globally interconnected society, this disparity is unsustainable. What if having more culturally interesting, more culturally responsive STEM classes is a way of increasing the diversity of the science and engineering workforce in the U.S.? This study focuses on a topic that has been generally overlooked by the STEM educational community, but one that is directly relevant to student engagement and learning outcomes: the role of culture as a variable in student learning. This study examines how different pedagogical approaches shape student outcomes in Astronomy 101 courses. In a comparative study two different pedagogical approaches were analyzed using both quantitative and qualitative methods in a semiexperimental nonequivalent group research design. The theories of culturally responsive pedagogy (CRP), active learning theory in STEM, and Indigenous knowledge systems (IKS) ground this approach. The findings of this study show important gains for all students. Underrepresented minority students (URM) in the course with increased culturally responsive pedagogy were exceptionally engaged and learning gains soared. By measure of the concept inventory, the URM students in the course with increased culturally responsive pedagogy outperformed all other students in the study. As the U.S. will have a non-white majority by the year 2045 and diversity in STEM faculty lags there is a need for tangible, evidence-based, culture-based curriculum and pedagogy. There is a problem and based on the evidence found in this study, there is a way to fix it.

Page generated in 0.0213 seconds