251 |
Trakční měniče velkých výkonů / High power traction convertersŽižka, Pavel January 2008 (has links)
This master thesis is based on realization of the previous university project, design of locomotive reconstruction and solving accompanying problems. In this thesis there are described all parts of a converter. The end of thesis involved theory about driver circuits of power transistors IGBT. Nowadays is still more often to think about reconstruction of the old technology rather than design a complete new construction. Investors take this decision from the financial reasons and because to the old technology designer can add only the converter. In this instant we talk about electrical locomotive, there should be kept a supply transformer and a driving unit (DC engine). The aim of this thesis is to design the converter between these two basic parts. The converter must taking the quasi-sinusoidal current which is in the phase with the input voltage, also must be able to control the engine and recuperate energy back to the network. For realization of these conditions, the converter must contain the active rectifier working in the DC-link and from which the step-down DC/DC converter is fed. Converter output is connected to the driving unit. The digital control of the power transistors is provided by processor MOTOROLA DSP56F. The control impulses, switching the power transistors, go through the driver circuits to transistors. All problems are described in the following text.
|
252 |
Trakční pohon elektrokola s motorem Heinzmann / A traction drive for an electric bike with motor "Heinzmann"Němec, Petr January 2008 (has links)
This work deals with a proposal and construction of a DC/DC converter for a control of a DC motor Heinzmann. The DC/DC converter will be used in an electric drive for a bicycle. The proposal of the DC/DC converter is designed for such engine power to avoid fully any human force to drive - pedaling. The work includes informations about the used motor, progress of proposal and dimensioning of the converter - power circuit and control electronics.
|
253 |
Bezdrátové pohotovostní přivolání ošetřovatelské služby / Wireless Nurse Care CallingBubník, Karel January 2010 (has links)
This work describes the design, construction a performance of such a complete wireless pager suitable for health care centers, rest homes, home application, for example for calling an attendant. This appliance is designed to be easy to attendance. A wireless transceiver is simplified and is attended only by one button. A wireless receiver also doesn't require a complicated manipulation. The aim is to create pager, which will be an useful assistant thanks to its price and simple construction.
|
254 |
Regulovatelný zdroj napájený a řízený pomocí USB / Controllable source supplied and controlled via USBSedláček, Michal January 2013 (has links)
Master thesis deals with design controllable switching power source. Device is supplied and controlled via USB bus of PC. The required output parameters are specified by user in a computer application. The teoretical part includes method of USB communication and introduction to switching power sources with focus on a Sepic topologii. The practical part describe individual circuit solution which contains of a complete device. Is analyzed in detail the proposal Sepic converter circuit and controling by microcontroller. The work also includes the design of microcontroller and computer applications. The result of this thesis is a functional device on which is the performed measurement.
|
255 |
Jízdní kolo s elektrickým motorem a benzinovou elektrocentrálou / Electric bike with a combustion-engine-powered generatorMička, Dominik January 2015 (has links)
A conceptual design and realization of a motor bike using combustion engine and electrical power transfer is the objective of this master´s thesis. Control strategy that allows combustion engine to reach maximal efficiency cooperating with wide range speed and torque operating area electromotor was created. All function blocks were realized. Also hardware of all needed parts was developed. The last part was a design and debugging of control software. Finally the functionality was documented by test drives and measurements.
|
256 |
Návrh spínaného laboratorního zdroje / Design of switching laboratory sourceMoravec, Pavel January 2015 (has links)
In present days there is no scientific laboratory without quality, adjustable and powerful source of voltage and current. Therefore this thesis is focused on creating such power source, which can provide voltage and current high enough for most of experiments or for development electrical devices or parts, which are not connected to power grid. This power source is able to provide symmetric voltage 30 V and current 6 A high in each branch. It is possible to control this power source remotely thanks for USB interface, which is standard equipment of majority of modern devices in these days. LCD display is part of this source, which shows the user set and real parameters at the output as well.
|
257 |
Návrh zdroje elektrické energie pro model letadla / Design of Power Supply for Aircraft ModelŠrámek, Martin January 2012 (has links)
Diplomová práca, ktorú držíte v rukách, sa zaoberá návrhom elektrického generátoru pre modely lietadiel na diaľkové ovládanie poháňané spaľovacím motorom. Takýmto modelom je dodávaná energia pomocou batérií, ktoré sa musia po vybití vymieňať. Motiváciou tejto práce bolo potlačiť potrebu pristávania za účelom dobíjania batériových paketov. Práca vyvíja niekoľko analýz a simulačných modelov pre riešenie tohto problému.
|
258 |
Využití termoelektrického generátoru pro zvýšení využití odpadního tepla / Use of a thermoelectric generator for increasing heat recoveryLaga, Ondřej January 2015 (has links)
This thesis deals with the problem of waste heat, namely, the exhaust gas which are not frequently used. Specifically, it is a design of thermoelectric generators set, power electronics for fan and heat exchanger proposal. The entire system uses the energy of the waste heat to increase the heating efficiency.
|
259 |
Nové koncepce výkonových pulsních měničů s použitím extrémně rychlých spínacích polovodičů na bázi karbidu křemíku / New Conceptions of Power Pulse Converters Using Extremely Fast Switching Semiconductors Based on SiCKuzdas, Jan January 2014 (has links)
This work deals with high power pulse converters (tens of kW) using new semiconductor devices of silicon carbide (SiC). Firstly the current state of the issue is analyzed. A research in a specific area of high power buck converters with pulse transformer follows. There was a strong emphasis on minimizing size and weight. The design process was focused also on reliability and robustness. To achieve the defined objectives, it was necessary to use the latest available switching transistors and diodes, and an unusually high switching frequency (100 kHz at a power of about 16 kW). Due to the high switching frequency, we achieved small size of pulse transformers and output chokes. An optimization of high-frequency pulse transformer with demand on minimum volume and weight of core and windings represents a separate theoretical part of the thesis. There have been proposed several analytical solutions of optimization problems, the results of which could overlap with the implementation in practice of switching power supplies. The combination of high switching frequency, fast semiconductors and the high power brings various parasitic effects to the power circuit. In the thesis, these parasitic effects are analyzed. Solutions which minimize or completely remove those effects were theoretically designed and successfully implemented, tested and finalized in experimental part of the work. Detailed description of the implementation of functional sample and series of validation measurements are included in the final part.
|
260 |
Implementation of DC-DC converter with maximum power point tracking control for thermoelectric generator applicationsJahanbakhsh, David January 2012 (has links)
A heavy duty vehicle looses approximately 30-40 % of the energy in the fuel as waste heat through the exhaust system. Recovering this waste heat would make the vehicle meet the legislative and market demands of emissions and fuel consumption easier. This recovery is possible by transforming the waste heat to electric power using a thermoelectric generator. However, the thermoelectric generator electric characteristics makes direct usage of it unprotable, thus an electric power conditioner is necessary. First a study of dierent DC-DC converters is presented, based on that the most suitable converter for thermoelectric application is determined. In order to maximize the harvested power, maximum power point tracking algorithms have been studied and analyzed. After the investigation, the single ended primary inductor converter was simulated and implemented with a perturb and observe algorithm, and the incremental conductance algorithm. The converter was tested with a 20 W thermoelectric generator, and evaluated.The results show that the incremental conductance is more robust and stable compared to the perturb and observe algorithm. Further on, the incremental conductance also has a higher average eciency during real implementation.
|
Page generated in 0.0456 seconds