• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Structural and reactivity analyses of nitrofurantoin 4 dimethylaminopyridine salt using spectroscopic and density functional theory calculations

27 April 2020 (has links)
Yes / Pharmaceutical salt, nitrofurantoin–4-dimethylaminopyridine (NF-DMAP), along with its native components NF and DMAP are scrutinized by FT-IR and FT-Raman spectroscopy along with density functional theory so that an insight into the H-bond patterns in the respective crystalline lattices can be gained. Two different functionals, B3LYP and wB97X-D, have been used to compare the theoretical results. The FT-IR spectra obtained for NF-DMAP and NF clearly validate the presence of C33–H34⋅⋅⋅O4 and N23–H24⋅⋅⋅N9 hydrogen bonds by shifting in the stretching vibration of –NH and –CH group of DMAP+ towards the lower wavenumber side. To explore the significance of hydrogen bonding, quantum theory of atoms in molecules (QTAIM) has been employed, and the findings suggest that the N23–H24⋅⋅⋅N9 bond is a strong intermolecular hydrogen bond. The decrement in the HOMO-LUMO gap, which is calculated from NF → NF-DMAP, reveals that the active pharmaceutical ingredient is chemically less reactive compared to the salt. The electrophilicity index (ω) profiles for NF and DMAP confirms that NF is acting as electron acceptor while DMAP acts as electron donor. The reactive sites of the salt are plotted by molecular electrostatic potential (MEP) surface and calculated using local reactivity descriptors. / SERB, DST, India, for providing the National Post-doctoral Fellowship (Project File Number: PDF/2016/003162); Central Facility for Computational Research (CFCR), University of Lucknow; Newton-Bhabha Ph.D. placement award (2017); Royal Society seed corn research grant (2018-19)
2

Metal Nitride Complexes as Potential Catalysts for C-H and N-H Bonds Activation

Alharbi, Waad Sulaiman S. 12 1900 (has links)
Recognizing the dual ability of the nitride ligand to react as a nucleophile or an electrophile – depending on the metal and other supporting ligands – is a key to their broad-range reactivity; thus, three DFT studies were initiated to investigate these two factors effects (the metal and supporting ligands) for tuning nitride ligand reactivity for C-H and N-H bond activation/functionalization. We focused on studying these factors effects from both a kinetic and thermodynamic perspective in order to delineate new principles that explain the outcomes of TMN reactions. Chapter 2 reports a kinetic study of C–H amination of toluene to produce a new Csp3–N (benzylamine) or Csp2–N (para-toluidine) bond activated by diruthenium nitride intermediate. Studying three different mechanisms highlighted the excellent ability of diruthenium nitride to transform a C-H bond to a new C-N bond. These results also revealed that nitride basicity played an important role in determining C–H bond activating ability. Chapter 3 thus reports a thermodynamic study to map basicity trends of more than a one hundred TMN complexes of the 3d and 4d metals. TMN pKb(N) values were calculated in acetonitrile. Basicity trends decreased from left to right across the 3d and 4d rows and increases from 3d metals to their 4d congeners. Metal and supporting ligands effects were evaluated to determine their impacts on TMNs basicity. In Chapter 4 we sought correlations among basicity, nucleophilicity and enhanced reactivity for N–H bond activation. Three different mechanisms for ammonia decomposition reaction (ADR) were tested: 1,2-addition, nitridyl insertion and hydrogen atom transfer (HAT). Evaluating nitride reactivity for the aforementioned mechanisms revealed factors related to the metal and its attached ligands on TMNs for tuning nitride basicity and ammonia N–H activation barriers.

Page generated in 0.0264 seconds