Spelling suggestions: "subject:"deactivity descriptors"" "subject:"eactivity descriptors""
1 |
Structural and reactivity analyses of nitrofurantoin 4 dimethylaminopyridine salt using spectroscopic and density functional theory calculationsKhan, E., Shukla, A., Srivastava, K., Gangopadhyay, D., Assi, Khaled H., Tandon, P., Vangala, Venu R. 27 April 2020 (has links)
Yes / Pharmaceutical salt, nitrofurantoin–4-dimethylaminopyridine (NF-DMAP), along with its native components NF and DMAP are scrutinized by FT-IR and FT-Raman spectroscopy along with density functional theory so that an insight into the H-bond patterns in the respective crystalline lattices can be gained. Two different functionals, B3LYP and wB97X-D, have been used to compare the theoretical results. The FT-IR spectra obtained for NF-DMAP and NF clearly validate the presence of C33–H34⋅⋅⋅O4 and N23–H24⋅⋅⋅N9 hydrogen bonds by shifting in the stretching vibration of –NH and –CH group of DMAP+ towards the lower wavenumber side. To explore the significance of hydrogen bonding, quantum theory of atoms in molecules (QTAIM) has been employed, and the findings suggest that the N23–H24⋅⋅⋅N9 bond is a strong intermolecular hydrogen bond. The decrement in the HOMO-LUMO gap, which is calculated from NF → NF-DMAP, reveals that the active pharmaceutical ingredient is chemically less reactive compared to the salt. The electrophilicity index (ω) profiles for NF and DMAP confirms that NF is acting as electron acceptor while DMAP acts as electron donor. The reactive sites of the salt are plotted by molecular electrostatic potential (MEP) surface and calculated using local reactivity descriptors. / SERB, DST, India, for providing the National Post-doctoral Fellowship (Project File Number: PDF/2016/003162); Central Facility for Computational Research (CFCR), University of Lucknow; Newton-Bhabha Ph.D. placement award (2017); Royal Society seed corn research grant (2018-19)
|
2 |
Computational Studies of Chemical Interactions: Molecules, Surfaces and Copper CorrosionHalldin Stenlid, Joakim January 2017 (has links)
The chemical bond – a corner stone in science and a prerequisite for life – is the focus of this thesis. Fundamental and applied aspects of chemical bonding are covered including the development of new computational methods for the characterization and rationalization of chemical interactions. The thesis also covers the study of corrosion of copper-based materials. The latter is motivated by the proposed use of copper as encapsulating material for spent nuclear fuel in Sweden. In close collaboration with experimental groups, state-of-the-art computational methods were employed for the study of chemistry at the atomic scale. First, oxidation of nanoparticulate copper was examined in anoxic aqueous media in order to better understand the copper-water thermodynamics in relation to the corrosion of copper material under oxygen free conditions. With a similar ambition, the water-cuprite interface was investigated with regards to its chemical composition and reactivity. This was compared to the behavior of methanol and hydrogen sulfide at the cuprite surface. An overall ambition during the development of computational methods for the analysis of chemical bonding was to bridge the gap between molecular and materials chemistry. Theory and results are thus presented and applied in both a molecular and a solid-state framework. A new property, the local electron attachment energy, for the characterization of a compound’s local electrophilicity was introduced. Together with the surface electrostatic potential, the new property predicts and rationalizes regioselectivity and trends of molecular reactions, and interactions on metal and oxide nanoparticles and extended surfaces. Detailed atomistic understanding of chemical processes is a prerequisite for the efficient development of chemistry. We therefore envisage that the results of this thesis will find widespread use in areas such as heterogeneous catalysis, drug discovery, and nanotechnology. / Den kemiska bindningen – en hörnsten inom naturvetenskapen och oumbärlig för allt liv – är det centrala temat i den här avhandlingen. Både grundläggande och tillämpade aspekter behandlas. Detta inkluderar utvecklingen av nya beräkningsmetoder för förståelse och karaktärisering av kemiska interaktioner. Dessutom behandlas korrosion av kopparbaserade material. Det sistnämnda är motiverat av förslaget att använda koppar som inkapslingsmaterial för hanteringen av kärnavfall i Sverige. Kvantkemiska beräkningsmetoder enligt state-of-the-art har använts för att studera kemi på atomnivå, detta i nära sammabete med experimentella grupper. Initialt studerades oxidation av kopparnanopartiklar under syrgasfria och vattenrika förhållanden. Detta för att bättre kartlägga koppar-vattensystemets termodynamik. Av samma orsak detaljstuderades även gränsskiktet mellan vatten och kuprit med fokus på dess kemiska sammansättning och reaktivitet. Resultaten har jämförts med metanols och vätesulfids kemiska beteende på ytan av kuprit. En övergripande målsättningen under arbetet med att utveckla nya beräkningsbaserade analysverktyg för kemiska bindningar har varit att överbrygga gapet mellan molekylär- och materialkemi. Därför presenteras teoretiska aspekter samt tillämpningar från både ett molekylärt samt ett fast-fas perspektiv. En ny deskriptor för karaktärisering av föreningars lokala elektrofilicitet har introducerats – den lokala elektronadditionsenergin. Tillsammans med den elektrostatiska potentialen uppvisar den nya deskriptorn förmåga att förutsäga samt förklara regioselektivitet och trender för molekylära reaktioner, och för interaktioner på metal- och oxidbaserade nanopartiklar och ytor. En detaljerad förståelse av kemiska processer på atomnivå är en nödvändighet för ett effektivt utvecklande av kemivetenskapen. Vi förutspår därför att resultaten från den här avhandlingen kommer att få omfattande användning inom områden som heterogen katalys, läkemedelsdesign och nanoteknologi. / <p>QC 20170829</p>
|
Page generated in 0.0531 seconds