61 |
Facilitating mobile crowdsensing from both organizers’ and participants’ perspectives / Facilitation de la collecte participative des données mobiles (mobile crowdsensing) au point de vue des organisateurs et des participantsWang, Leye 18 May 2016 (has links)
La collecte participative des données mobiles est un nouveau paradigme dédié aux applications de détection urbaines utilisant une foule de participants munis de téléphones intelligents. Pour mener à bien les tâches de collecte participative des données mobiles, diverses préoccupations relatives aux participants et aux organisateurs doivent être soigneusement prises en considération. Pour les participants, la principale préoccupation porte sur la consommation d'énergie, le coût des données mobiles, etc. Pour les organisateurs, la qualité des données et le budget sont les deux préoccupations essentielles. Dans cette thèse, deux mécanismes de collecte participative des données mobiles sont proposés : le téléchargement montant collaboratif des données et la collecte clairsemée des données mobiles. Pour le téléchargement montant collaboratif des données, deux procédés sont proposés 1) « effSense », qui fournit la meilleure solution permettant d’économiser la consommation d'énergie aux participants ayant un débit suffisant, et de réduire le coût des communications mobiles aux participants ayant un débit limité; 2) « ecoSense », qui permet de réduire le remboursement incitatif par les organisateurs des frais associés au coût des données mobiles des participants. Dans la collecte clairsemée des données mobiles, les corrélations spatiales et temporelles entre les données détectées sont exploitées pour réduire de manière significative le nombre de tâches allouées et, par conséquent, le budget associé aux organisateurs, tout en assurant la qualité des données. De plus, l’intimité différentielle est afin de répondre au besoin de préservation de la localisation des participants / Mobile crowdsensing is a novel paradigm for urban sensing applications using a crowd of participants' sensor-equipped smartphones. To successfully complete mobile crowdsensing tasks, various concerns of participants and organizers need to be carefully considered. For participants, primary concerns include energy consumption, mobile data cost, privacy, etc. For organizers, data quality and budget are two critical concerns. In this dissertation, to address both participants' and organizers' concerns, two mobile crowdsensing mechanisms are proposed - collaborative data uploading and sparse mobile crowdsensing. In collaborative data uploading, participants help each other through opportunistic encounters and data relays in the data uploading process of crowdsensing, in order to save energy consumption, mobile data cost, etc. Specifically, two collaborative data uploading procedures are proposed (1) effSense, which helps participants with enough data plan to save energy consumption, and participants with little data plan to save mobile data cost; (2) ecoSense, which reduces organizers' incentive refund that is paid for covering participants' mobile data cost. In sparse mobile crowdsensing, spatial and temporal correlations among sensed data are leveraged to significantly reduce the number of allocated tasks thus organizers' budget, still ensuring data quality. Specifically, a sparse crowdsensing task allocation framework, CCS-TA, is implemented with compressive sensing, active learning, and Bayesian inference techniques. Furthermore, differential privacy is introduced into sparse mobile crowdsensing to address participants' location privacy concerns
|
62 |
DISTRIBUTED MACHINE LEARNING OVER LARGE-SCALE NETWORKSFrank Lin (16553082) 18 July 2023 (has links)
<p>The swift emergence and wide-ranging utilization of machine learning (ML) across various industries, including healthcare, transportation, and robotics, have underscored the escalating need for efficient, scalable, and privacy-preserving solutions. Recognizing this, we present an integrated examination of three novel frameworks, each addressing different aspects of distributed learning and privacy issues: Two Timescale Hybrid Federated Learning (TT-HF), Delay-Aware Federated Learning (DFL), and Differential Privacy Hierarchical Federated Learning (DP-HFL). TT-HF introduces a semi-decentralized architecture that combines device-to-server and device-to-device (D2D) communications. Devices execute multiple stochastic gradient descent iterations on their datasets and sporadically synchronize model parameters via D2D communications. A unique adaptive control algorithm optimizes step size, D2D communication rounds, and global aggregation period to minimize network resource utilization and achieve a sublinear convergence rate. TT-HF outperforms conventional FL approaches in terms of model accuracy, energy consumption, and resilience against outages. DFL focuses on enhancing distributed ML training efficiency by accounting for communication delays between edge and cloud. It also uses multiple stochastic gradient descent iterations and periodically consolidates model parameters via edge servers. The adaptive control algorithm for DFL mitigates energy consumption and edge-to-cloud latency, resulting in faster global model convergence, reduced resource consumption, and robustness against delays. Lastly, DP-HFL is introduced to combat privacy vulnerabilities in FL. Merging the benefits of FL and Hierarchical Differential Privacy (HDP), DP-HFL significantly reduces the need for differential privacy noise while maintaining model performance, exhibiting an optimal privacy-performance trade-off. Theoretical analysis under both convex and nonconvex loss functions confirms DP-HFL’s effectiveness regarding convergence speed, privacy performance trade-off, and potential performance enhancement with appropriate network configuration. In sum, the study thoroughly explores TT-HF, DFL, and DP-HFL, and their unique solutions to distributed learning challenges such as efficiency, latency, and privacy concerns. These advanced FL frameworks have considerable potential to further enable effective, efficient, and secure distributed learning.</p>
|
Page generated in 0.0429 seconds