1 |
New mechanism-based anticancer drugs that act as orphan nuclear receptor agonistsChintharlapalli, Sudhakar Reddy 17 September 2007 (has links)
1,1-Bis(3'-indolyl)-1-(p-substitutedphenyl)methanes containing ptrifluoromethyl
(DIM-C-pPhCF3), p-t-butyl (DIM-C-pPhtBu), and phenyl (DIM-CpPhC6H5)
substituents have been identified as a new class of peroxisome proliferatoractivated
receptor ó (PPARó) agonists that exhibit antitumorigenic activity. In this study,
the PPARó-active compounds decreased HT-29, HCT-15, RKO, HCT116 and SW480
colon cancer cell survival and KU7 and 253JB-V33 bladder cancer cell survival. In HT-
29, HCT-15, SW480 and KU7 cells, the PPARó agonists induced caveolin-1 expression
and this induction was significantly downregulated after cotreatment with the PPARó
antagonist GW9662. Since overexpression of caveolin-1 is known to suppress cancer
cell and tumor growth, the growth inhibitory effects of the DIM compounds in these cell
lines are associated with PPARó-dependent induction of caveolins. These PPARó-active
compounds did not induce caveolin-1 in HCT-116 cells. However, these compounds
induced NSAID-activated gene-1 (NAG-1) and apoptosis in this cell line. This
represents a novel receptor-independent pathway for C-DIM-induced growth inhibition and apoptosis in colon cancer cells. In SW480 colon cancer cells 2.5-7.5 üM C-DIMs
induced caveolin-1 whereas high concentrations (10 üM) induced pro-apoptotic NAG-1
expression. In athymic nude mice bearing SW480 cell xenografts DIM-C-pPhC6H5
inhibited tumor growth and immunohistochemical staining of the tumors show induction
of apoptosis and NAG-1 expression. Thus, the PPARó-active compounds induce both
receptor-dependent and-independent responses in SW480 cells which are separable over
a narrow range of concentrations and this dual mechanism of action enhances their
antiproliferative and anticancer activities. Similar results were obtained for another
structural class of PPARó agonists namely 2-cyano-3,12-dioxoolean-1,9-dien-28-oic
acid (CDDO) and the corresponding methyl (CDDO-Me) and imidazole (CDDO-Im)
esters. Structure-activity studies show that 1,1-bis(3'-indolyl)-1-(psubstitutedphenyl)
methanes containing p-trifluoromethyl (DIM-C-pPhCF3), hydrogen
(DIM-C-pPh) and p-methoxy (DIM-C-pPhOCH3) substituents activate Nur77 and induce
apoptosis in pancreatic, prostate, and breast cancer cell lines. Nur77 agonists activate the
nuclear receptor, and downstream responses include decreased cell survival, induction of
cell death pathways including tumor necrosis factor related apoptosis-inducing ligand
(TRAIL) and PARP cleavage. Nur77 agonists also inhibit tumor growth in vivo in
athymic nude mice bearing Panc-28 cell xenografts.
|
2 |
Mecanisme de fragmentation des peptides en spectrométrie de masse : couplages de techniques de caractérisation structurale / ir spectroscopy integrated to mass spectrometry : instruments and methodologyHernandez Alba, Oscar 09 December 2014 (has links)
La spectrométrie de masse tandem est une technique analytique versatile, notamment utilisée dans le champ de la protéomique pour dériver la séquence de peptides. Cette thèse vise à contribuer au développement de méthodes intégrées à la spectrométrie de masse afin d’apporter des informations structurales sur les ions moléculaires, intermédiaires réactionnels ou produits de réactions. La fragmentation des peptides protonés est induite par collisions avec une gaz rare (CID). Des multiples fragments sont observés et la séquence peptidique peut être dérivée de la mesure de la masse de séries d’ions analogues. Les mécanismes de fragmentation par CID des peptides protonés sont très complexes, constituant un champ de recherche important. Dans ce contexte, le couplage de deux techniques comme la spectrométrie de masse et la spectroscopie infrarouge a été utilisé pour caractériser des ions fragments (an et bn) de peptides. Divers signatures infrarouges identifiées dans les gammes spectrales 1000-2000 et 3000-3800 cm-1 et caractéristiques de différents motifs structuraux ont mis en évidence la permutation de la séquence de la chaîne peptidique pour les ions an. Dans le cas des ions bn, la formation d’une structure macrocyclique s’appuie sur la formation spécifique d’un complexe produit d’une réaction avec NH3, que nous avons caractérisé par spectroscopie infrarouge. L’objectif ultime de cette thèse était de mettre en place une approche multimodale sur un spectromètre de masse unique, intégrant la séparation par mobilité ionique et la spectroscopie infrarouge d’ions moléculaires en permettant la caractérisation structurale par spectroscopie infrarouge des ions simultanément sélectionnés en masse et par mobilité ionique. La technique de mobilité ionique mise en œuvre est de type « Differential Ion Mobility spectrometry » (DIMS). Nous aurions souhaité pouvoir exploiter l’IMS sur des ions fragments de peptides, mais la technique DIMS ne le permettait pas. Nous avons choisi d’explorer la séparation et la caractérisation des monosaccharides cationisés par Li+, Na+ et K+. Dans le cas des complexes de Li+, les résultats spectroscopiques et de mobilité ionique sont cohérents avec les structures les plus stables prédites par la théorie. Ces calculs de chimie quantique permettent aussi d’interpréter une signature spectrale spécifique de complexes de Li+ avec des anomères de glucose. / Tandem mass spectrometry is a versatile analytical technique, used in particular in the field of proteomics to derive peptide sequence. This thesis aims to contribute to the development of integrated approaches to mass spectrometry to provide structural information on molecular ions, which can either be reaction intermediates or reaction products. The fragmentation of protonated peptides is induced by multiple collisions with rare gas atoms (CID). Multiple fragments are observed and the peptide sequence is derived from the measurement of the mass difference between two consecutive analogous ions. Fragmentation mechanisms of the protonated peptides under CID conditions constitute an intense research field. In the frame of this PhD thesis, mass spectrometry and infrared spectroscopy were coupled to characterize the fragment ions (an and bn) peptides. Several infrared signatures were found in the 1000-2000 and 3000-3800 cm-1 spectral ranges characteristic of different structural motifs. In the case of the an ions, these IR signatures provide evidence of the permutation of the sequence of the peptide chain. In the case of the middle size bn ions, the formation of a macrocyclic structure relies on the specific formation of an ion-molecule complex with NH3, whose structure has been characterized by IR spectroscopy.The ultimate objective of this thesis was to develop a multimodal approach based on a single mass spectrometer, which incorporates ion mobility spectrometry and infrared spectroscopy in order to characterize the structure of mobility- and mass-selected molecular ions. The ion mobility technique used is the "Differential Ion Mobility spectrometry" (DIMS). Peptide fragment ions could not be studied using this new set-up. We chose to study the separation and characterization of cationized monosaccharides with Li+, Na+ or K+. In the case of lithiated complexes, the spectroscopic and ion mobility data are consistent with the low energy structures predicted by theory, allowing in particular the interpretation of an IR specific signature characteristic of some Li+ complexes of glucose anomers.
|
Page generated in 0.0131 seconds