1 |
The interstellar medium at high redshift: the sub-DLA at z=2.06 towards the quasar J2123−0050Milutinovic, Nikola 01 September 2009 (has links)
DLAs are the primary reservoirs of neutral gas available for star formation at high redshift. However, DLAs are metal poor and lack molecular gas. In this thesis, I present a study of an extraordinary case of a z=2.06 sub-DLA towards the quasar J2123−0050, which is characterized by a metallicity that approaches solar, and a high H2 molecular fraction (log f(H2) = −2.54). Furthermore, this SDLA harbors HD molecules, only the third such detection at high redshift, and with the highest (HD/2H2) fraction of -2.75. To understand these observations, I study the effects of dust depletion and photoionization on the interpretation of raw abundance measurements. I find that the magnitude of photoionization and dust depletion effects has a profound impact on the interpretation of this SDLA. The calculated corrections lower the elemental and molecular abundances suggesting that the ISM in the SDLA towards J2123−0050 exhibits properties similar to the
gas in the local sightlines.
|
2 |
Determining the characteristic mass of DLA host haloes from 21cm fluctuationsPetrie, Stephen January 2010 (has links)
Absorption profiles are found in the observed spectra from quasars, and the most prominent of these are the Damped Lyman-alpha Absorbers (DLAs). They are caused by large collections of neutral hydrogen (HI) gas, which are thought to be housed in galaxies that lie along the line-of-sight to quasars. HI gas associated with DLAs contains most of the HI gas in the Universe during 2 < z < 5, and hence details about DLAs are important for understanding the history of star formation, as well as the formation and evolution of galaxies. Wyithe (2008) proposed a method of determining the characteristic mass of dark matter haloes that host DLAs. This involves generating an analytic power spectrum of the fluctuations in 21cm brightness temperature caused by the HI gas in the Universe. Calculating this analytic 21cm power spectrum requires a formalism for the HI mass weighted clustering bias of DLAs on both large and small scales. We include this DLA clustering bias by firstly generating an analytic galaxy power spectrum using the halo model of Peacock & Smith (2000), as well as including the occupation of haloes by galaxies -- using the Halo Occupation Distribution (HOD) weighting of Peacock (2003). This weighting is then adapted to account for the occupation of haloes by HI gas. / We then fit the analytic 21cm power spectrum generated using this formalism to a simulated 21cm power spectrum, with the characteristic mass of DLA host haloes being used as a fitting parameter. The DLA host halo mass is in turn dependent upon two parameters in our model: the minimum mass of haloes M_{min} included in our formalism, and the HI weighting index alpha_{HI}. The neutral hydrogen fraction is another parameter, which we can choose to be the same as that from our simulation volume. If we also choose a value for alpha_{HI} that is motivated by analysis of the dark matter and HI gas content of the haloes in the simulation, then we are able to fit the 21cm power spectrum at both large and small scales, with an M_{min} that is the same or similar to the lowest mass in the simulation's halo catalogue. This in turn gives a similar value for the DLA host halo mass that is known to be the case in the simulation. This demonstrates the viability of the Wyithe (2008) method for determining the DLA host halo mass using observations of 21cm fluctuations. However, degeneracies in the free parameters of our analytic formalism would hinder an accurate determination of the DLA host halo mass from actual future observations. This is due to the fact that the real space, spherically averaged 21cm power spectrum is used throughout this thesis. However, extending our analytic formalism to the redshift space, angular-dependent 21cm power spectrum should be capable of breaking the degeneracy between DLA host halo mass and neutral hydrogen fraction.
|
3 |
Addressing the Data Location Assurance Problem of Cloud Storage EnvironmentsNoman, Ali 09 April 2018 (has links)
In a cloud storage environment, providing geo-location assurance of data to a cloud user is very challenging as the cloud storage provider physically controls the data and it would be challenging for the user to detect if the data is stored in different datacenters/storage servers other than the one where it is supposed to be. We name this problem as the “Data Location Assurance Problem” of a Cloud Storage Environment. Aside from the privacy and security concerns, the lack of geo-location assurance of cloud data involved in the cloud storage has been identified as one of the main reasons why organizations that deal with sensitive data (e.g., financial data, health-related data, and data related to Personally Identifiable Infor-mation, PII) cannot adopt a cloud storage solution even if they might wish to. It might seem that cryptographic techniques such as Proof of Data Possession (PDP) can be a solution for this problem; however, we show that those cryptographic techniques alone cannot solve that. In this thesis, we address the data location assurance (DLA) problem of the cloud storage environment which includes but is not limited to investigating the necessity for a good data location assurance solution as well as challenges involved in providing this kind of solution; we then come up with efficient solutions for the DLA problem. Note that, for the totally dis-honest cloud storage server attack model, it may be impossible to offer a solution for the DLA problem. So the main objective of this thesis is to come up with solutions for the DLA problem for different system and attack models (from less adversarial system and attack models to more adversarial ones) available in existing cloud storage environments so that it can meet the need for cloud storage applications that exist today.
|
4 |
The search for diffuse interstellar bands in quasar absorption line systemsYork, Brian A. 15 August 2008 (has links)
The diffuse interstellar bands (DIBs) probably arise from complex organic molecules whose strength in local galaxies correlates with neutral hydrogen column density, N(H I), and dust reddening, E(B−V). Because Damped Lyman-α systems are known to have high N(H I), and Ca II absorbers in quasar (QSO) spectra are posited to have high N(H I) and reddening, both represent promising sites for the detection of DIBs at cosmological distances. I present the results of a search for diffuse bands in seven DLAs and nine Ca II absorbers. I announce the detection of the first narrow DIBs at z>0 towards one DLA and one Ca II system. I further investigate the relative strengths of the DIBs as well as their correlations with N(H I) and E(B−V). Finally, I discuss the prospects for using DIBs to better understand the properties of quasar absorption systems, and for using DIB searches in absorption systems to better understand the properties of DIBs.
|
5 |
The search for diffuse interstellar bands in quasar absorption line systemsYork, Brian A. 15 August 2008 (has links)
The diffuse interstellar bands (DIBs) probably arise from complex organic molecules whose strength in local galaxies correlates with neutral hydrogen column density, N(H I), and dust reddening, E(B−V). Because Damped Lyman-α systems are known to have high N(H I), and Ca II absorbers in quasar (QSO) spectra are posited to have high N(H I) and reddening, both represent promising sites for the detection of DIBs at cosmological distances. I present the results of a search for diffuse bands in seven DLAs and nine Ca II absorbers. I announce the detection of the first narrow DIBs at z>0 towards one DLA and one Ca II system. I further investigate the relative strengths of the DIBs as well as their correlations with N(H I) and E(B−V). Finally, I discuss the prospects for using DIBs to better understand the properties of quasar absorption systems, and for using DIB searches in absorption systems to better understand the properties of DIBs.
|
Page generated in 0.0638 seconds