• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 100
  • 11
  • 10
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 146
  • 75
  • 47
  • 42
  • 32
  • 30
  • 30
  • 23
  • 23
  • 21
  • 21
  • 21
  • 20
  • 19
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Adding the s-Process Element Cerium to the APOGEE Survey: Identification and Characterization of Ce ii Lines in the H-band Spectral Window

Cunha, Katia, Smith, Verne V., Hasselquist, Sten, Souto, Diogo, Shetrone, Matthew D., Allende Prieto, Carlos, Bizyaev, Dmitry, Frinchaboy, Peter, García-Hernández, D. Anibal, Holtzman, Jon, Johnson, Jennifer A., Jőnsson, Henrik, Majewski, Steven R., Mészáros, Szabolcs, Nidever, David, Pinsonneault, Mark, Schiavon, Ricardo P., Sobeck, Jennifer, Skrutskie, Michael F., Zamora, Olga, Zasowski, Gail, Fernández-Trincado, J. G. 01 August 2017 (has links)
Nine Ce II lines have been identified and characterized within the spectral window observed by the Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey (between lambda 1.51 and 1.69 mu m). At solar metallicities, cerium is an element that is produced predominantly as a result of the slow capture of neutrons (the s-process) during asymptotic giant branch stellar evolution. The Ce II lines were identified using a combination of a high-resolution (R = lambda/delta lambda = 100,000) Fourier Transform Spectrometer (FTS) spectrum of a Boo and an APOGEE spectrum (R. =. 22,400) of a metal-poor, but s-process enriched, red giant (2M16011638-1201525). Laboratory oscillator strengths are not available for these lines. Astrophysical gf-values were derived using alpha Boo as a standard star, with the absolute cerium abundance in alpha Boo set by using optical Ce II lines that have precise published laboratory gf-values. The near-infrared Ce II lines identified here are also analyzed, as consistency checks, in a small number of bright red giants using archival FTS spectra, as well as a small sample of APOGEE red giants, including two members of the open cluster NGC 6819, two field stars, and seven metal-poor N-and Al-rich stars. The conclusion is that this set of Ce II lines can be detected and analyzed in a large fraction of the APOGEE red giant sample and will be useful for probing chemical evolution of the s-process products in various populations of the Milky Way.
2

Chemical abundances of Giant Planet Host Stars

Brugamyer, Erik John 10 August 2015 (has links)
The positive correlation between planet detection rate and host star iron abundance lends strong support to the core accretion theory of planet formation. However, iron is not the most significant mass contributor to the cores of giant planets. Since giant planet cores are thought to grow from silicate grains with icy mantles, the likelihood of gas giant formation should depend heavily on the oxygen and silicon abundance of the planet formation environment. Here we compare the silicon and oxygen abundances of a set of 76 planet hosts and a control sample of 80 metal-rich stars without any known giant planets. Our new, independent analysis was conducted using high resolution, high signal-to-noise data obtained at McDonald Observatory. Because we do not wish to simply reproduce the known planet-metallicity correlation, we have devised a statistical method for matching the underlying [Fe/H] distributions of our two sets of stars. We find a 99\% probability that planet detection rate depends on the silicon abundance of the host star, over and above the observed planet-metallicity correlation. We do not detect any such correlation for oxygen. Our results would thus seem to suggest that grain nucleation, rather than subsequent icy mantle growth, is the important limiting factor in forming giant planets via core accretion. Based on our results and interpretation, we predict that planet detection should correlate with host star abundance for refractory elements responsible for grain nucleation and that no such trends should exist for the most abundant volatile elements responsible for icy mantle growth. / text
3

Nucleosynthesis and s-process element formation in giant stars : a thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Astronomy in the University of Canterbury /

Wylie, Elizabeth C. January 2006 (has links)
Thesis (Ph. D.)--University of Canterbury, 2006. / Typescript (photocopy). Includes bibliographical references (p. 195-204). Also available via the World Wide Web.
4

Integral field spectroscopy of optical recombination lines in the planetary nebula NGC 7009: implications for dual-abundance models

Hwang, Sehyun 2009 August 1900 (has links)
text
5

A SUPER-SOLAR METALLICITY FOR STARS WITH HOT ROCKY EXOPLANETS

Mulders, Gijs D., Pascucci, Ilaria, Apai, Dániel, Frasca, Antonio, Molenda-Żakowicz, Joanna 23 November 2016 (has links)
Host star metallicity provides a measure of the conditions in protoplanetary disks at the time of planet formation. Using a sample of over 20,000 Kepler stars with spectroscopic metallicities from the LAMOST survey, we explore how the exoplanet population depends on host star metallicity as a function of orbital period and planet size. We find that exoplanets with orbital periods less than 10 days are preferentially found around metal-rich stars ([Fe/H] similar or equal to 0.15 +/- 0.05 dex). The occurrence rates of these hot exoplanets increases to similar to 30% for super-solar metallicity stars from similar to 10% for stars with a sub-solar metallicity. Cooler exoplanets, which reside at longer orbital periods and constitute the bulk of the exoplanet population with an occurrence rate of greater than or similar to 90%, have host star metallicities consistent with solar. At short orbital periods, P < 10 days, the difference in host star metallicity is largest for hot rocky planets (< 1.7 R-circle plus), where the metallicity difference is [Fe/H] similar or equal to 0.25 +/- 0.07 dex. The excess of hot rocky planets around metal-rich stars implies they either share a formation mechanism with hot Jupiters, or trace a planet trap at the protoplanetary disk inner edge, which is metallicity dependent. We do not find statistically significant evidence for a previously identified trend that small planets toward the habitable zone are preferentially found around low-metallicity stars. Refuting or confirming this trend requires a larger sample of spectroscopic metallicities.
6

Deuteration of ammonia in the starless core Ophiuchus/H-MM1

Harju, J., Daniel, F., Sipilae, O., Caselli, P., Pineda, J. E., Friesen, R. K., Punanova, A., Guesten, R.;, Wiesenfeld, L., Myers, P. C., Faure, A., Hily-Blant, P., Rist, C., Rosolowsky, E., Schlemmer, S., Shirley, Y. L. 30 March 2017 (has links)
Context. Ammonia and its deuterated isotopologues probe physical conditions in dense molecular cloud cores. The time-dependence of deuterium fractionation and the relative abundances of different nuclear spin modifications are supposed to provide a means of determining the evolutionary stages of these objects. Aims. We aim to test the current understanding of spin-state chemistry of deuterated species by determining the abundances and spin ratios of NH2D, NHD2 and ND3 in a quiescent, dense cloud. Methods. Spectral lines of NH3, NH2D, NHD2, ND3 and N2D+ were observed towards a dense, starless core in Ophiuchus with the APEX, GBT and IRAM 30-m telescopes. The observations were interpreted using a gas-grain chemistry model combined with radiative transfer calculations. The chemistry model distinguishes between the different nuclear spin states of light hydrogen molecules, ammonia and their deuterated forms. Different desorption schemes can be considered. Results. High deuterium fractionation ratios with NH2D = NH3 similar to 0 : 4, NHD2 = NH2D similar to 0 : 2 and ND3 = NHD2 similar to 0 : 06 are found in the core. The observed ortho/para ratios of NH2D and NHD2 are close to the corresponding nuclear spin statistical weights. The chemistry model can approximately reproduce the observed abundances, but consistently predicts too low ortho/para-NH2D, and too large ortho/para-NHD2 ratios. The longevity of N2H+ and NH3 in dense gas, which is prerequisite to their strong deuteration, can be attributed to the chemical inertia of N-2 on grain surfaces. Conclusions. The discrepancies between the chemistry model and the observations are likely to be caused by the fact that the model assumes complete scrambling in principal gas-phase deuteration reactions of ammonia, which means that all the nuclei are mixed in reactive collisions. If, instead, these reactions occur through proton hop/hydrogen abstraction processes, statistical spin ratios are to be expected. The present results suggest that while the deuteration of ammonia changes with physical conditions and time, the nuclear spin ratios of ammonia isotopologues do not probe the evolutionary stage of a cloud.
7

A multicomponent echelle spectral data analysis of four planetary nebulae

Armour, Mary-Helen. January 2000 (has links)
Thesis (M. Sc.)--York University, 2000. Graduate Programme in Physics and Astronomy. / Typescript. Includes bibliographical references (leaves 119-121). Also available on the Internet. MODE OF ACCESS via web browser by entering the following URL: http://wwwlib.umi.com/cr/yorku/fullcit?pMQ56161.
8

Silicon and oxygen abundances in planet-host stars

Brugamyer, Erik John 11 February 2011 (has links)
The positive correlation between planet detection rate and host star iron abundance lends strong support to the core accretion theory of planet formation. However, iron is not the most significant mass contributor to the cores of giant planets. Since giant planet cores grow from silicate grains with icy mantles, the likelihood of gas giant formation should depend heavily on the oxygen and silicon abundance of the planet formation environment. Here we compare the silicon and oxygen abundances of a set of 60 planet hosts and a control sample of 60 metal-rich stars without giant planets. We find a 99% probability that planet detection rate depends on the silicon abundance of the host star, over and above the observed planet-metallicity correlation. Due to our large error bars on oxygen abundances, we do not yet observe any correlation between oxygen abundance and planet detection rate. We predict that a correlation between planet occurrence and oxygen abundance should emerge when we can measure [O/Fe] at 0.05 dex precision. Since up to 20% of the carbon in the universe may be in refractory grains, we also predict that planet detection rate should correlate positively with host star carbon abundance for any population of planets formed by core accretion. / text
9

Hobby-Eberly Telescope Chemical Abundances of Stars in the Halo (CASH) project : spectroscopic analyses of the first ~80 stars

Hollek, Julie Ann 11 February 2011 (has links)
The Hobby-Eberly Telescope Chemical Abundances of Stars in the Halo (CASH) project aims to characterize the nature of the early universe through the study of metal-poor stars in the stellar halo of the galaxy. Once completed, this will be the largest set of abundances determined for metal-poor stars from high resolution spectra. In this paper, we present chemical abundances and trends of eleven elements for the first ~80 stars of the ~500 star study. These 80 stars serve as a pilot sample to test the automated stellar parameter and abundance determination pipeline newly developed for the CASH project called CASHCODE. Among the pilot sample, two stars with [Fe/H]<-3.5 were discovered and their abundance analysis is discussed. / text
10

Atomic Processes in Stellar Atmospheres : Inelastic Collisions and Effects on Late-type Spectra

Martinez Osorio, Yeisson Fabian January 2015 (has links)
Chemical abundances as measured from stellar spectral lines are often subject to uncertainties due to lack of accurate data for inelastic collisions, which is needed for non-local thermodynamic equilibrium (non-LTE) modelling. For cool stars, understanding of collision processes with electrons and hydrogen atoms is required to achieve high precision measurements. In this thesis, I have investigated the role of these collisions on the non-LTE formation of Li and Mg spectral lines in late-type stars. In the case of Li, electron impact excitation processes were calculated using the R-matrix with pseudo states method and the results found to agree well with recent calculations using the convergent close-coupling technique. These modern data were employed in non-LTE calculations by updating an existing model atom, which already included modern data for hydrogen collision processes. Our results were compared with calculations using older semi-empirical approximation calculations and only small differences were found: about 0.01 dex (~ 2%) or less in the abundance corrections. We therefore conclude that the influence of uncertainties in the electron collision data on non-LTE calculations is negligible. Indeed, together with the collision data for the charge transfer process Li + H ↔ Li+ + H- now available, and barring the existence of an unknown important collisional process, the collisional data in general is not a source of significant uncertainty in non-LTE Li line formation calculations. In the case of Mg, electron impact excitation processes were again calculated with the Rmatrix with pseudo states method, and used together with recent hydrogen collision calculations to build and test a model atom, without free parameters, for non-LTE modelling. Both electron and hydrogen collision processes, including charge transfer and excitation, are found to be important thermalising agents in various cases. The modelled spectra agree well with observed spectra from benchmark stars in the optical and infrared. The modelling predicts non-LTE abundance corrections ∆A(Mg)NLTE–LTE in dwarfs, both solar metallicity and metal-poor, to be very small (of order 0.01 dex), even smaller than found in previous studies. In giants, corrections vary greatly between lines, but can be as large as 0.4 dex. Results of calculations in a large grid of 1D model atmospheres are presented, and the implications for studies of Mg discussed. The propagation of uncertainties in the inelastic collision data to those in stellar abundances is investigated, and found to lead to small uncertainties, once again typically less than 0.01 dex (2%), although for few stellar models in specific lines (e.g., metal-poor suns, in the 7691 Å line) uncertainties can be as large as 0.03 dex (7%).

Page generated in 0.0352 seconds