• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 7
  • 4
  • 3
  • Tagged with
  • 50
  • 24
  • 13
  • 12
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Analyzing the effects of ionic strength, particle size and particle characteristics on the transport mechanisms of colloids in single, saturated dolomite fractures.

Seggewiss, Graham 04 1900 (has links)
<p>A series of experiments were carried out to gain a better understanding of the mechanisms governing the transport of biological and non-biological particles through single, saturated dolomite fractures at the laboratory scale. Fracture apertures and general roughness were characterized using hydraulic and conservative solute tracer experiments.</p> <p>The effects of particle size, surface characteristics and ionic strength of carrying solution were all evaluated. Particulate material studied included MS2, <em>E. coli</em> and two sizes of carboxylated microspheres. To elucidate the effect of ionic strength on particulate transport, the ionic strength of the carrying solution was altered during each experiment. All particulate experiments were completed at a specific discharge of 15 m/day to facilitate comparisons.</p> <p>Recovery of biological particulate material was found to be much less relative to the carboxylated microspheres, even though the energy profiles predicted similar interactions with the fracture surface. This suggests that the biological surface has a significant impact on retention within the fracture. Further, altering the ionic strength of the carrying solution did not spur significant elution of additional particulate material, regardless of surface characteristics. Therefore, it was determined that retention within the secondary energy minimum was negligible under these operating conditions.</p> <p>With respect to carboxylated microspheres, increased retention was observed within the less variable fracture. This suggests that increased variability within a fracture results in increased eddying within the aperture field. This eddying effectively reduces the aperture region available for particle transport, lessening the particle/fracture interaction. Overall, while mean residence times were similar, recovery of biological particles was poorly replicated by microspheres.</p> / Master of Applied Science (MASc)
32

AFM surface force measurements between hydrophobized gold surfaces

Wang, Jialin 08 October 2008 (has links)
In 1982, Israelachvili and Pashley reported the first measurements of a hitherto unknown attractive force between two mica surfaces hydrophobized in cetyltrimethylammonium bromide (CTAB) solutions. Follow-up experiments conducted by many investigators confirmed their results, while others suggested that the "hydrophobic force" is an artifact due to nanobubbles (or cavitation). Evidences for the latter included the discontinuities (or steps) in the force versus distance curves and the pancake-shaped nano-bubbles seen in atomic force microscopic (AFM) images. Recent measurements conducted in degassed water showed, however, smooth force versus distance curves, indicating that the hydrophobic force is not an artifact due to nanobubbles.1, 2 Still other investigators3, 4 suggested that the long-range attraction observed between hydrophobic surfaces is due to the correlation between the patches of adsorbed ionic surfactant and the patches of unoccupied surface. For this theory to work, it is necessary that the charged patches be laterally mobile to account for the strong attractive forces observed in experiment. In an effort to test this theory, AFM force measurements were conducted with gold substrates hydrophobized by self-assembly of alkanethiols and xanthates of different chain lengths. The results showed long-range attractions despite the fact that the hydrophobizing agents chemisorb on gold and, hence, the adsorption layer is immobile. When the gold surfaces were hydrophobized in a 1 Ã 10-3 M thiol-in-ethanol solution for an extended period of time, the force curves exhibited steps. These results indicate that the long-range attractions are caused by the coalescence of bubbles, as was also reported by Ederth.5 The steps disappeared, however, when the species adsorbed on top of the chemisorbed monolayer were removed by solvent washing, or when the gold substrates were hydrophobized in a 1 Ã 10-5 M solution for a relatively short period of time. AFM force measurements were also conducted between gold substrates coated with short-chain thiols and xanthates to obtain hydrophobic surfaces with water contact angles (ï ±) of less than 90o. Long-range attractions were still observed despite the fact that cavitation is thermodynamically not possible. Having shown that hydrophobic force is not due to coalescence of pre-existing bubbles, cavitation, or correlation of charged patches, the next set of force measurements was conducted in ethanol-water mixtures. The attractive forces became weaker and shorter-ranged than in pure water and pure ethanol. According to the Derjaguin's approximation6, an attractive force arises from the decrease in the excess free energy (ï §f) of the thin film between two hydrophobic surfaces.7 Thus, the stronger hydrophobic forces observed in pure water and pure ethanol can be attributed to the stronger cohesive energy of the liquid due to stronger H-bonding. Further, the increase in hydrophobic force with decreasing separation between two hydrophobic surfaces indicates that the H-bonded structure becomes stronger in the vicinity of hydrophobic surfaces. The force measurements conducted at different temperatures in the range of 10-40C showed that the hydrophobic attraction between macroscopic surfaces causes a decrease in film entropy (Sf), which confirms that the hydrophobic force is due to the structuring of water in the thin film between two hydrophobic surfaces. The results showed also that the hydrophobic interaction entails a reduction in the excess film enthalpy (Hf), which may be associated with the formation of partial (or full) clathrates formed in the vicinity of hydrophobic surfaces. The presence of the clathrates is supported by the recent finding that the density of water in the vicinity of hydrophobic surfaces is lower than in the bulk.8 / Ph. D.
33

Development of a Flotation Rate Equation from First Principles under Turbulent Flow Conditions

Sherrell, Ian M. 13 December 2004 (has links)
A flotation model has been proposed that is applicable in a turbulent environment. It is the first turbulent model that takes into account hydrodynamics of the flotation cell as well as all relevant surface forces (van der Waals, electrostatic, and hydrophobic) by use of the Extended DLVO theory. The model includes probabilities for attachment, detachment, and froth recovery as well as a collision frequency. A review of the effects fluids have on the flotation process has also been given. This includes collision frequencies, attachment and detachment energies, and how the energies of the turbulent system relate to them. Flotation experiments have been conducted to verify this model. Model predictions were comparable to experimental results with similar trends. Simulations were also run that show trends and values seen in industrial flotation systems. These simulations show the many uses of the model and how it can benefit the industries that use flotation. / Ph. D.
34

Physical Properties of Macromolecule-metal oxide nanoparticle complexes: Magnetophoretic Mobility, Size, and Interparticle Potentials

Mefford, Olin Thompson 09 August 2007 (has links)
Magnetic nanoparticles coated with polymers hold great promise as materials for applications in biotechnology. In this body of work, magnetic fluids for the treatment of retinal detachment are examined closely in three regimes; motion of ferrofluid droplets in aqueous media, size analysis of the polymer-iron oxide nanoparticles, and calculation of interparticle potentials as a means for predicting fluid stability. The macromolecular ferrofluids investigated herein are comprised of magnetite nanoparticles coated with tricarboxylate-functional polydimethylsiloxane (PDMS) oligomers. The nanoparticles were formed by reacting stoichiometric concentrations of iron chloride salts with base. After the magnetite particles were prepared, the functional PDMS oligomers were adsorbed onto the nanoparticle surfaces. The motion of ferrofluid droplets in aqueous media was studied using both theoretical modeling and experimental verification. Droplets (~1-2 mm in diameter) of ferrofluid were moved through a viscous aqueous medium by an external magnet of measured field and field gradient. Theoretical calculations were made to approximate the forces on the droplet. Using the force calculations, the times required for the droplet to travel across particular distances were estimated. These estimated times were within close approximation of experimental values. Characterization of the sizes of the nanoparticles was particularly important, since the size of the magnetite core affects the magnetic properties of the system, as well as the long-term stability of the nanoparticles against flocculation. Transmission electron microscopy (TEM) was used to measure the sizes and size distributions of the magnetite cores. Image analyses were conducted on the TEM micrographs to measure the sizes of approximately 6000 particles per sample. Distributions of the diameters of the magnetite cores were determined from this data. A method for calculating the total particle size, including the magnetite core and the adsorbed polymer, in organic dispersions was established. These estimated values were compared to measurements of the entire complex utilizing dynamic light scattering (DLS). Better agreement was found for narrow particle size distributions as opposed to broader distributions. The stability against flocculation of the complexes over time in organic media were examined via modified Derjaguin-Landau-Verwey-Overbeek (DLVO) calculations. DLVO theory allows for predicting the total particle-particle interaction potentials, which include steric and electrostatic repulsions as well as van der Waals and magnetic attractions. The interparticle potentials can be determined as a function of separation of the particle surfaces. At a constant molecular weight of the polymer dispersion stabilizer, these calculations indicated that dispersions of smaller PDMS-magnetite particles should be more stable than those containing larger particles. The rheological characteristics of neat magnetite-PDMS complexes (i.e, no solvent or carrier fluid were present) were measured over time in the absence of an applied magnetic field to probe the expected properties upon storage. The viscosity of a neat ferrofluid increased over the course of a month, indicating that some aggregation occurred. However, this effect could be removed by shearing the fluids at a high rate. This suggests that the particles do not irreversibly flocculate under these conditions. / Ph. D.
35

Development of a turbulent flotation model from first principles

Do, Hyunsun 02 August 2010 (has links)
Flotation is a process of separating particulate materials of different surface properties in a hydrodynamic environment, and is used extensively for separating different minerals from each other in the mining industry. In this process, air bubbles are introduced at the bottom of a particulate suspension (pulp), so that bubbles coated with hydrophobic particles rise to the top and form a froth phase while hydrophobic particles stay in suspension. The selectivity of the flotation process is determined by the hydrophobicity of the particulate materials involved, while the kinetics of the process is controlled by the hydrodynamic conditions and the disjoining pressures in the thin aqueous films between air bubbles and particles. In the present work, a mathematical model for the flotation process has been developed by considering both the hydrodynamic and surface chemical parameters. The model can describe the events occurring in both the pulp and froth phases of a mechanically-agitated flotation cell. The pulp-phase model is based on predicting the kinetics of bubble-particle attachment using the DLVO extended to include contributions from hydrophobic force and the theory of turbulent collision. The froth-phase model is based on predicting the rate of bubble-particle detachment by considering bubble coarsening and water recovery. The predictions from the overall flotation model are in general agreement with the results obtained in single-bubble flotation experiments and the flotation test results reported in literature. Since the model has been developed largely from first principles, it has predictive and diagnostic capabilities. / Ph. D.
36

Direct Force Measurement between Surfaces Coated with Hydrophobic Polymers in Aqueous Solutions and the Separation of Mixed Plastics by Flotation

Ma, Nini 09 January 2009 (has links)
Froth floatation is an important process used in the mining industry for separating minerals from each other. The separation process is based on rendering a selected mineral hydrophobic using an appropriate hydrophobizing reagent (collector), so that it can selectively attach onto the surfaces of a rising stream of air bubbles. Thus, controlling the hydrophobicity of the minerals to be separated from each other is of critical importance in flotation. If one wishes to separate plastics from each other by flotation, however, it would be necessary to render a selected plastic hydrophilic and leave the others hydrophobic. In the present work, the possibility of separating common plastics from each other by flotation has been explored. While water contact angle is the most widely used measure of the hydrophobicity of a solid, it does not give the information on the kinetics of flotation. Therefore, the forces acting between the surfaces coated with different hydrophobic polymers (or plastics) in water were measured using the Atomic Force Microscope (AFM). The results obtained with polystyrene, polymethylmethacryrate (PMMA), polypropylene (PP), and Teflon showed the existence of long-range attractive forces (or hydrophobic force) that cannot be explained by the classical DLVO theory. The surface force measurements were conducted in pure water and in solutions of surfactant (alkyltrimethylammonium chloride) and a salt (NaCl). In pure water, the attractive forces were much stronger than van der Waals force. In the presence of the surfactant and NaCl, the long-range attraction decreased with increasing concentration and the alkyl chain length. A series of contact angle measurements were conducted to determine the hydrophobicity of polystyrene (PS), polyvinyl chlorite (PVC), and polymethylmethacrylate (PMMA) in the presence of different wetting agents (surfactants). The results show the possibility of separating plastics from each other by flotation, and a series of microflotation tests conducted on PS and PVC showed promising results. / Master of Science
37

Studies of Thin Liquid Films Confined between Hydrophobic Surfaces

Li, Zuoli 12 December 2012 (has links)
Surface force measurements previously conducted with thiolated gold surfaces showed a decrease in excess film entropy (£GSf), suggesting that hydrophobic force originates from changes in the structure of the medium (water) confined between hydrophobic surfaces. As a follow-up to the previous study, surface force measurements have been conducted using an atomic force microscope (AFM) with hydrophobic silica surfaces at temperatures in the range of 10 to 40¢XC. The silica sphere and silica plate were treated by both chemisorption of octadecyltrichlorosilane (OTS) and physical adsorption of octadecyltrimethylammonium chloride (C18TACl). A thermodynamic analysis of the results show similar results for both of the samples, that both ""Sf and excess film enthalpy ("Hf) become more negative with decreasing thickness of the water layer between the hydrophobic surfaces and decreasing temperature. |"Hf | > |T"Sf| represents a necessary condition for the excess free energy change ("Gf ) to be negative and the hydrophobic interaction to be attractive. Thus, the results obtained with both the silylated and C18TACl-adosrbed silica surfaces in the present work and the thiolated gold suefaces reported before show hydrophobic forces originate from structural changes in the medium. Thermodynamic analysis of SFA force measurements obtained at various temperatures revealed that "Sf were much more negative in the shorter hydrophobic force ranges than in the longer ranges, indicating a more significant degree of structuring in the water film when the two hydrophobic surfaces are closer together. It is believed that the water molecules in the thin liquid films (TLFs) of water form clusters as a means to reduce their free energy when they cannot form H-bonds to neighboring hydrophobic surfaces. Dissolved gas molecules should enhance the stability of structured cluster due to the van der Waals force between the entrapped gas molecules and the surrounding water molecules1, which may enhance the strength of the hydrophobic force. Weaker long-range attractive forces detected in degassed water than in air-equilibrated water was found in the present work by means of AFM force measurements, supporting the effect of dissolved gas on the structuring of water. At last, temperature effects on hydrophobic interactions measured in ethanol and the thermodynamic analysis revealed similar results as those found in water, indicating that the hydrophobic force originates from H-bond propagated structuring in the mediums. / Ph. D.
38

Surface Forces in Thin Liquid Films of H-Bonding Liquids Confined between Hydrophobic Surfaces

Xia, Zhenbo 30 November 2015 (has links)
Hydrophobic interaction plays an important role in biology, daily lives, and a variety of industrial processes such as flotation. While the mechanisms of hydrophobic interactions at molecular scale, as in self-assembly and micellization, is relatively well understood, the mechanisms of macroscopic hydrophobic interactions have been controversial. It is, therefore, the objective of the present work to study the mechanisms of interactions between macroscopic hydrophobic surfaces in H-bonding liquids, including water, ethanol, and water-ethanol mixtures. The first part of the present study involves the measurement of the hydrophobic forces in the thin liquid films (TLFs) confined between two identical hydrophobic surfaces of contact angle 95.3o using an atomic force microscope (AFM). The measurements are conducted in pure water, pure ethanol, and ethanol-water mixtures of varying mole fractions. The results show that strong attractive forces, not considered in the classical DLVO theory, are present in the colloid films formed with all of the H-bonding liquids tested. When an H-bonding liquid is confined between two hydrophobic surfaces, the vicinal liquid molecules form clusters in the TLFs and give rise to an attractive force. The cluster formation is a way to minimize free energy for the molecules denied of H-bonding with the substrates. Thus, solvophobic forces are the result of the antipathy between the CH2- and CH3-coated surface and H-bonding liquid confined in the film. A thermodynamic analysis of the solvophobic forces measured at different temperatures support this mechanism, in which solvophobic interactions entail decreases in the excess film enthalpy and entropy. The former represents the energy gained by building clusters, while the latter represents loss of entropy due to structure building. Thus, hydrophobic interaction may be a subset of solvophobic interaction. The solvophobic forces are strongest in pure water and pure ethanol, and decrease when one is added to the other. Adding a very small amount of ethanol to water sharply reduced the solvophobic force due to the adsorption of the former with an inverse orientation. An exposure of the OH-group toward the aqueous phase decreases the antipathy between the surface and H-bonding liquid and hence causes the hydrophobic (or solvophobic) forces to decrease. The second part of the study involves the measurement of the hydrophobic forces in the wetting films of water using the force apparatus for deformable surfaces (FADS). This new instrument recently developed at Virginia Tech is designed to monitor the deformation of bubbles to determine the surface forces in wetting films. In effect, an air bubble is used a force sensor. The measurements have been conducted with gold, chalcopyrite, and galena as substrates. The results obtained with all three minerals show that hydrophobic force increases with increasing water contact angle, suggesting that hydrophobic forces are inherent properties of hydrophobic surfaces rather than created from artifacts such as preexisting nanobubbles and/or cavitation. A utility of the intrinsic relationship between hydrophobic force and contact angle is to predict flotation kinetics from the hydrophobicity of the minerals of interest. / Ph. D.
39

COLLOIDAL INTERACTIONS AND STABILITY IN PROCESSING, FORMATION AND PROPERTIES OF INORGANIC-ORGANIC NANOCOMPOSITES

Alhassan, Saeed M. 04 May 2011 (has links)
No description available.
40

Surface Forces between Silica Surfaces in CnTACl Solutions and Surface Free Energy Characterization of Talc

Zhang, Jinhong 11 December 2006 (has links)
In general, the stability of suspension can be studied using two methods. <i>One</i> is to directly measure the forces between two interacting surfaces in media. <i>The other</i> is to study the interfacial surface free energies of the particles in suspension. Direct surface force measurements were conducted between silica surfaces in octadecyltrimetylammonium chloride (C₁₈TACl) solutions using an Atomic Force Microscope (AFM). The results showed that the hydrophobic force existed in both air-saturated and degassed C₁₈TACl solutions. The attraction decreased with NaCl addition, and was the strongest at the point of charge neutralization (p.c.n.) of silica substrate. The force measurement results obtained in C<sub>n</sub>TACl solutions showed that the attractions decayed exponentially and became the maximum at the p.c.n.'s. The decay lengths (<i>D</i>) increased with surfactant chain length. The measured forces were fitted to a charged-patch model of Miklavic <i>et al</i>. (1994) with rather large patch sizes. It was also found that the decay length decreased linearly with the effective concentration of the CH2/CH3 groups raised to the power of -1/2. This finding is in line with the model of Eriksson <i>et al</i>. (1989). It suggested that the long-range attractions are hydrophobic forces originating from the changes in water structure across a hydrophobic surface-solution interface. For the TiO₂/water/TiO₂ system, the Hamaker constant was found to be 4±1×10<sup>-20</sup> J. The force curves obtained in the TiO₂/C<sub>n</sub>TACl system showed a repulsion-attraction-repulsion transition with increasing surfactant concentration. The long-range attraction observed between TiO₂ surfaces in C<sub>n</sub>TACl solutions reached maximum at the p.c.n., and the decay length increased with chain length. In present work, the thin-layer wicking technique was used to determine the surface free energy (γ<sub>s</sub>) and its components of talc samples. The results showed that the basal surfaces of talc are weakly basic while the edge surfaces are acidic. The effect of chemicals on the surface free energies of talc was systemically studied. The results showed that CMC (carboxymethyl cellulose sodium salt) and EO/PO (ethylene oxide/propylene oxide) co-polymers made talc surface hydrophilic by increasing the surface free energies, especially γ<sup>LW</sup> and γ<sup> -</sup>. SOPA (sodium polyacrylate) increased greatly the zeta-potentials instead of the surface free energies. / Ph. D.

Page generated in 0.0218 seconds