Spelling suggestions: "subject:"exfoliated""
1 |
The preparation and characterisation of intercalation compoundsKosidowski, Maria-Laura S. January 1999 (has links)
No description available.
|
2 |
Production of High-quality Few-layer Graphene Flakes by Intercalation and ExfoliationAlzahrani, Areej A. 30 November 2017 (has links)
Graphene, a two-dimensional nanomaterial, has been given much attention since it was first isolated in 2004. Driving this intensive research effort are the unique properties of this one atom thick sheet of carbon, in particular its electrical, thermal and mechanical properties. While the technological applications proposed for graphene abound, its low-cost production in large scales is still a matter of interrogation. Simple methods to obtain few-layered graphene flakes of high structural quality are being investigated with the exfoliation of graphite taking a prominent place in this arena. From the many suggested approaches, the most promising involve the use of liquid media assisted by intercalants and shear forces acting on the basal layers of graphite.
In this thesis, it is discussed how a novel method was developed to produce flakes with consistent lateral dimensions that are also few-layered and retain the expected structural and chemical characteristics of graphene. Here, the source material was a commercially available graphiteintercalated compound, also known as expandable graphite. Several exfoliation-inducing tools were investigated including the use of blenders, homogenizers, and ultrasonic processors. To aid in this process, various solvents and intercalants were explored under different reactive conditions. The more efficient approach in yielding defect-free thin flakes was the use of thermally expanded graphite in boiling dimethylformamide followed by ultrasonic processing and centrifugation. In parallel, a method to fraction the flakes as a function of their lateral size was developed. Ultimately, it was possible to obtain samples of graphene flakes with a lateral dimension of a few micrometers (<5 μm) and thickness of 1-3 nm (i.e. <10 layers).
|
3 |
LIQUID PHASE EXFOLIATION OF 2D LAYERED MATERIALS AND THEIR APPLICATIONWinchester, Andrew 01 May 2014 (has links)
In this work, several materials possessing a layered structure were investigated using a technique of exfoliation in liquid phase to produce few- to mono-layers of the material. Materials exfoliated in such a way included graphite, boron nitride, molybdenum disulfide and tungsten disulfide. Subsequent transmission electron microscopy and accompanying electron diffraction patterns revealed that few and mono layer forms of these materials have been realized through this exfoliation method. Ultraviolet-visible spectroscopy confirmed the shifting of the band gaps in molybdenum and tungsten disulfides that is predicted in reducing the number of layers of these materials and was also used to confirm the band gap of the boron nitride. As a potential application, exfoliated molybdenum disulfide was used in the construction of electrodes for electrical charge storage in an electrochemical double layer capacitor, or supercapacitor, style device. Cyclic voltammetry, galvanostatic charge discharge, and electrochemical impedance spectroscopy measurements were performed using three different electrolytes, which showed good capacitive behavior for these devices. Using the data from electrochemical impedance spectroscopy, equivalent circuit models were generated to represent the systems in different electrolytes. From this, it was determined that the capacitive behavior of these systems was partially diffusion limited.
|
4 |
Computational Modeling of Graphene Oxide Exfoliation and Lithium Storage CharacteristicsMortezaee, Reza 28 May 2013 (has links)
No description available.
|
5 |
Localized Corrosion Behaviour of Cu-lean AA 7003 Extrusionskrishnan, charanya January 2011 (has links)
<p>A study was undertaken to achieve a better understanding of the key microstructure-performance relationships involved with the intergranular corrosion and exfoliation corrosion of Cu-lean AA7003 alloy extrusions, as a function of the heat-treated condition. The heat treatments of interest in this study include the naturally-aged T4 condition, representing the as-extruded condition, an artificially-aged T6 condition, representing a post-weld stress-relief condition, and an artificially-aged automotive paint-bake cycle condition. The influence of heat treatment on the resultant microstructure is characterized using light optical microscopy, coupled with image analysis, and electron (scanning & transmission) microscopy, coupled with energy dispersive spectroscopy. The influence of heat treatment on the corrosion behaviour is characterized using anodic polarization measurements and ASTM standardized testing to evaluate the susceptibility resistance to intergranular corrosion (ASTM G110) and exfoliation corrosion (ASTM G34).</p> <p>The cross-sectional (LT-ST & L-ST) microstructures of all three heat treatments consist of a fibrous, non-recrystallized grain structure in the interior, and a coarse recrystallized grain structure at the exterior surface. Both grain structures are slightly elongated along L-direction. The grain size distribution and grain aspect ratio distribution is weakly dependant on the heat treatment applied, and on the orientation plane. Among the two artificial aging, the T6 (post-weld stress-relief) condition has the higher micro-hardness (yield strength), as it has higher density (volume fraction) of the strengthening MgZn<sub>2</sub>-type precipitates (η, η′ and their GP zones) within the Al matrix grains.</p> <p>Anodic polarization measurements show a more negative corrosion potential (E<sub>corr</sub>) for the two artificially aging heat-treated conditions. The shift is believed to be due to the micro-galvanic cell activity established between the more noble Al matrix grains and the more active strengthening MgZn<sub>2</sub>-type precipitates within the Al matrix grains, which have a significantly increased surface area (volume fraction) in the artificially-aged condition. A similar, single breakdown potential (E<sub>b</sub>) corresponding to a pitting potential (E<sub>pit</sub>) is observed, regardless of the heat-treated condition. The similar potential is believed to be due to localized breakdown of the passive film at the periphery of coarse second phase intermetallic particles (Al<sub>3</sub>Fe), which remain unaffected by artificial aging.</p> <p>Of the three heat-treated conditions studied, the T6 condition exhibits the lowest susceptibility to both intergranular corrosion and exfoliation corrosion. The lower susceptibility is believed to be due to the lack of any Cu enrichment in across the grain boundary region (either in the solute depted zone or in the generic Mg(Zn,CuAl)<sub>2</sub> grain boundary precipitates). This lack of enrichment is believed to produce a smaller micro-galvanic cell activity across the grain boundary region, as compared to that produced when Cu is enriched across the grain boundary region, particularly in the Solute depted zone (SDZ).</p> <p><br /></p> / Master of Applied Science (MASc)
|
6 |
Procédé d'exfoliation du graphite en phase liquide dans des laboratoires sur puce / Process of liquid phase exfoliation of graphite in labs-on-a-chipQiu, Xiaoyu 26 September 2018 (has links)
L’exfoliation en phase liquide du graphite est un procédé simple susceptible de produire du graphène à faible coût. Ces dernières années, de nombreuses équipes ont exploité la cavitation acoustique et la cavitation hydrodynamique comme moyen d’exfoliation. La cavitation acoustique ne peut traiter qu’une quantité limitée de fluide et génère des défauts sur la structure du graphène,tandis que la cavitation hydrodynamique dans une solution en écoulement n’agit que localement pendant une durée très brève. Les équipes de recherche utilisant ce dernier procédé compensent cette brièveté en imposant à la solution chargée en graphite des différences de pression très fortes, et utilisent alors des infrastructures macroscopiques lourdes pour lesquelles il est difficile de distinguer le rôle du cisaillement de celui de la cavitation. Nous avons cherché à développer un nouveau procédé d’exfoliation basé sur l’utilisation de microsystèmes fluidiques capables de générer un écoulementcavitant avec un débit supérieur à 10 L/h pour une différence de pression modérée n’excédant pas 10 bar. Une nouvelle génération de laboratoires ‘sur puce’ a ainsi été imaginée et réalisée, permettant de traiter des solutions surfactées chargées en microparticules de graphite. Il est apparu que laconcentration solide et la durée de traitement sont des paramètres cruciaux pour l’efficacité du procédé. Par rapport à un écoulement monophasique laminaire microfluidique, l’écoulement cavitant produit plus de produits exfoliés et de graphène, avec un rendement de l’ordre de 6%. Ceci indique que l’implosion des bulles et la turbulence favorisent également les interactions entre particules. Ce procédé d’exfoliation microfluidique, qui ne nécessite une puissance que de quelques Watts, permet d’envisager à terme une production économe et écologique de graphène en suspension. / Liquid phase exfoliation of graphite is a simple and low-cost process, that is likely to produce graphene. The last few years, many researchers have used acoustic or hydrodynamic cavitation as an exfoliating tool. Acoustic cavitation is limited to low volumes and defects are present on the graphenesheets ; hydrodynamic cavitation inside a flowing solution acts briefly. So, people are using big reactors running with high pressure drops, and it is difficult from a fundamental point of view to know the physical role of shear rate versus cavitation, in the exfoliation process. We have tried to develop a new process funded on hydrodynamic cavitation ’on a chip’, with flow rates above 10 L/h and pressure drop below 10 bar. A new generation of ’labs on a chip’ has been designed and performed, processing with aqueous surfactant graphite solutions. The solid concentration and the duration of the process have proved to be key parameters. Cavitating microflows have exhibited a better efficiency (up to ~6%) than laminar liquid microflows, for the production of graphene flakes. Collapsing bubbles and turbulence are also likely to enhance particles interactions. Such a microfluidic process, which requires an hydraulic power of a few Watt, makes possible a further low-cost and green production of graphene sheets.
|
7 |
Graphene organic hybrid materials / Matériaux hybrides organiques à base de graphèneSchlierf, Andrea 04 September 2014 (has links)
En 2004, le carbone, la base de toute vie connue sur Terre, a marqué les esprits une fois de plus: Les scientifiques de l’Université de Manchester au Royaume Uni ont pu extraire une matière carbonée complètement nouvelle, le graphène à partir d’un morceau de graphite comme celui qui compose les crayons. À l’aide d’un ruban adhésif, ils ont obtenu une paillette de carbone de l’épaisseur d’un atome seulement, à une époque où beaucoup pensaient qu’un matériaux cristallin aussi fin ne pouvait pas être stable. Le graphène parfait est une couche monoatomique composée d’atomes de carbone hybridés sp2, arrangés en structure alvéolaire; sa structure chimique particulière lui donne des propriétés physiques et chimique remarquable. Le graphène est devenu rapidement la matière carbonée la plus intensivement étudiée parmi celles «possiblement révolutionnaires», avec ses applications potentielles s’étendant de la microélectronique aux composites, des énergies renouvelables à la médecine. En 2010, Geim et Novoselov ont été récompensés par le prix Nobel de physique pour leurs «expériences révolutionnaires sur les matériaux bi-dimensionnels en graphène» qui a ouvert une nouvelle ère dans la science des matières carbonées.La chimie non-covalente du graphène est exploitée et étudiée dans cette thèse dans le but de concevoir, produire, transformer et caractériser les nouveaux matériaux hybrides graphène-organique. L’étendue de ce travail couvre les aspects mécanistiques de l’exfoliation en phase liquide du graphène avec des colorants, les aspects fondamentaux des interactions entre le graphène et le chromophore, en phase liquide et solide, ainsi que l’élaboration de suspensions hybrides de graphène dans le but d‘applications en électronique organique et dans les matériaux composites polymères fonctionnels. / In 2004, carbon, the basis of all known life on earth, has surprised once again: Researchers from University of Manchester, UK, extracted a completely new carbon material, graphene, from a piece of graphite such as is found in pencils. Using adhesive tape, they obtained a flake of carbon with a thickness of just one single atom, at a time when many believed it impossible for such thin crystalline materials to be stable. Pristine graphene is a mono-atomic sheet of, sp2 hybridized carbon atoms arranged in a honeycomb network; this particular chemical structure gives rise to its outstanding physical and chemical properties. Graphene rapidly became the most intensively studied among the ‘possibly revolutionary’carbon materials, with its potential applications reaching from microelectronics to composites, from renewable energy to medicine. In 2010, Geim and Novoselov were honored with the Nobel Prize in Physics for their “ground breaking experiments regarding the two-dimensional material graphene” that started a new era in the science of carbon materials.In this thesis we exploit and study the non-covalent chemistry of graphene to design, produce, process and characterize novel graphene organic hybrid materials. The scope of this work covers mechanistic aspects of graphene liquid phase exfoliation with dyes, fundamental aspects of graphene chromophore interactions in liquid and solid phase and the formulation of graphene hybrid suspensions towards application in organic electronics and functional polymer composite materials.
|
8 |
Influence des propriétésdu graphite sur le premier cycle d'intercalation du lithium / Influence of graphite properties on the first cycle lithium intercalationBernardo, Philippe 05 July 2011 (has links)
Les batteries à ions lithium alimentent la plupart des petits appareils électriques, portables. Elles font usage du graphite comme électrode négative. Pour optimiser celle-ci, il faut réduire la perte spécifique de charge du premier cycle d’intercalation du lithium. Cette perte est principalement due à la formation d’une couche passive par décomposition de l’électrolyte. Les propriétés du graphite qui l’influencent sont partiellement connues. En particulier, une meilleure compréhension de l’exfoliation du graphite, responsable d’une grande perte spécifique de charge, est souhaitée. Ce phénomène est provoqué par la co-intercalation de solvant à travers les plans de bord des particules. Des paramètres comme la cristallinité, la chimie de surface et la réactivité du graphite semblent jouer un rôle. Une étude systématique a été entreprise afin de déterminer leur influence sur le premier cycle dans un électrolyte standard à base de carbonate d’éthylène et de diméthyle. Il apparaît que les complexes de surface oxygénés ne jouent pas de rôle particulier tandis que les complexes hydrogénés favorisent la co-intercalation de solvant. De plus, les graphites ayant une faible teneur en sites actifs constituant l’Active Surface Area (ASA), mesurée par chimisorption d’oxygène, sont plus enclins à exfolier. Comme les atomes de bord à deux voisins sont les plus réactifs en raison de la présence d’un électron célibataire, la plus grande sensibilité à la co-intercalation de solvant des graphites de faible ASA peut s’expliquer par la formation d’une couche passive inappropriée sur des plans de bord peu réactifs laissant passer le solvant. / In the field of small portable electrical devices, lithium-ion batteries are common. Graphite is used as the negative electrode. To improve its electrochemical performances, the first cycle specific charge loss must be decreased. It is predominantly attributed to the electrolyte reduction into a passivation layer. The graphite properties which influence this charge loss are not clearly identified. In particular, the graphite exfoliation which is responsible for a huge specific charge loss must be better understood. This dramatic phenomenon is due to solvent co-intercalation through the particle edge planes. Many graphite parameters such as crystallinity, surface chemistry and reactivity are thought to play a role. A systematic study was carried out in which the influence of each parameter on the first cycle was assessed in a standard ethylene and dimethyl carbonate based electrolyte. It appears that the presence of oxygen surface complexes does not have any influence whereas C6H bonds cause slight exfoliation. In addition, graphite samples containing low amount of active sites : the so-called Active Surface Area (ASA), quantified by oxygen chemisorption, are more likely to exfoliate. Since graphite active sites are mainly the edge atoms because of unpaired electron presence, low ASA graphite exfoliation can be explained by the formation of inappropriate passivation layer on the edge planes letting solvent molecules co-intercalate.
|
9 |
Modeling the Exfoliation Rate of Graphene Nanoplatelet Production and Application for Hydrogen StorageKnick, Cory 18 September 2012 (has links)
No description available.
|
10 |
Controlled Attachment of Nanoparticles to Layered OxidesYao, Yuan 18 May 2012 (has links)
A series of oxide materials were modified with different nanoparticles (NPs). Novel cobalt@H4Nb6O17 nanopeapod structures were fabricated and magnetic NPs modified oxide nanosheets and nanoscrolls were prepared. Both aqueous method and two-phase method were applied to prepare gold NPs onto oxide nanosheets, nanoscrolls and other nanocrystals.
The combination of H4Nb6O17 nanoscrolls and cobalt NPs generate a novel method to fabricate nanopeapod structures. Cobalt NPs were synthesized in the presence of exfoliated H4Nb6O17 nanosheets and the resulting magnetic chain structures, formed due to the dipole-dipole interaction, were captured within scrolled lamella. The yield of peapod structures can be improved by using proper reagents and reaction temperatures. As similar method with iron oxide NPs also produced peapod-like structures in a low yield.
Exfoliated Dion-Jacobson phase layered perovskite HLaNb2O7 (HLN), its organic derivate propoxyl-HLaNb2O7 (pHLN), Ruddlesden-Popper phase perovskite H2SrTa2O7 (HSTO) and Aurivillius phase perovskite H2W2O7 (HWO) were synthesized and functionalized with gold NPs by in-situ methods. Gold NPs were prepared by both an aqueous method and two-phase method. The size of NPs can be adjusted by different reaction times. Overall, the latter method shows a narrower size distribution and better dispersion. In addition, most gold NPs prepared by the two-phase method were attached on the surface of nanosheets and almost no free gold NPs were observed in solution. This approach should be applicable to most layered perovskites.
The aqueous and two-phase methods were also applied on the preparation of gold NPs onto H4Nb6O17 nanosheets and nanoscrolls. H4Nb6O17 nanosheets were prepared by two approaches and showed similar gold NPs attachment. LiNbO3 nanocrystals can be also modified with gold NPs by the two-phase method though free gold NPs were observed.
Further studies involved the functionalization of layered perovskites and related compounds with magnetic NPs. Iron oxide and cobalt NPs were synthesized in the presence of layered perovskite and modified perovskite nanosheets were obtained.
|
Page generated in 0.1213 seconds