• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Localized Corrosion Behaviour of Cu-lean AA 7003 Extrusions

krishnan, charanya January 2011 (has links)
<p>A study was undertaken to achieve a better understanding of the key microstructure-performance relationships involved with the intergranular corrosion and exfoliation corrosion of Cu-lean AA7003 alloy extrusions, as a function of the heat-treated condition. The heat treatments of interest in this study include the naturally-aged T4 condition, representing the as-extruded condition, an artificially-aged T6 condition, representing a post-weld stress-relief condition, and an artificially-aged automotive paint-bake cycle condition. The influence of heat treatment on the resultant microstructure is characterized using light optical microscopy, coupled with image analysis, and electron (scanning & transmission) microscopy, coupled with energy dispersive spectroscopy. The influence of heat treatment on the corrosion behaviour is characterized using anodic polarization measurements and ASTM standardized testing to evaluate the susceptibility resistance to intergranular corrosion (ASTM G110) and exfoliation corrosion (ASTM G34).</p> <p>The cross-sectional (LT-ST & L-ST) microstructures of all three heat treatments consist of a fibrous, non-recrystallized grain structure in the interior, and a coarse recrystallized grain structure at the exterior surface. Both grain structures are slightly elongated along L-direction. The grain size distribution and grain aspect ratio distribution is weakly dependant on the heat treatment applied, and on the orientation plane. Among the two artificial aging, the T6 (post-weld stress-relief) condition has the higher micro-hardness (yield strength), as it has higher density (volume fraction) of the strengthening MgZn<sub>2</sub>-type precipitates (η, η′ and their GP zones) within the Al matrix grains.</p> <p>Anodic polarization measurements show a more negative corrosion potential (E<sub>corr</sub>) for the two artificially aging heat-treated conditions. The shift is believed to be due to the micro-galvanic cell activity established between the more noble Al matrix grains and the more active strengthening MgZn<sub>2</sub>-type precipitates within the Al matrix grains, which have a significantly increased surface area (volume fraction) in the artificially-aged condition. A similar, single breakdown potential (E<sub>b</sub>) corresponding to a pitting potential (E<sub>pit</sub>) is observed, regardless of the heat-treated condition. The similar potential is believed to be due to localized breakdown of the passive film at the periphery of coarse second phase intermetallic particles (Al<sub>3</sub>Fe), which remain unaffected by artificial aging.</p> <p>Of the three heat-treated conditions studied, the T6 condition exhibits the lowest susceptibility to both intergranular corrosion and exfoliation corrosion. The lower susceptibility is believed to be due to the lack of any Cu enrichment in across the grain boundary region (either in the solute depted zone or in the generic Mg(Zn,CuAl)<sub>2</sub> grain boundary precipitates). This lack of enrichment is believed to produce a smaller micro-galvanic cell activity across the grain boundary region, as compared to that produced when Cu is enriched across the grain boundary region, particularly in the Solute depted zone (SDZ).</p> <p><br /></p> / Master of Applied Science (MASc)
2

Response of 7075 and 7050 aluminium alloys to high temperature pre-precipitation heat treatment

Tehinse, Olayinka 26 August 2014 (has links)
Al-Zn-Mg-Cu (7xxx series) aluminium alloys are widely used for aircraft structures. It is difficult to obtain a combination of optimal strength and stress corrosion cracking (SCC) resistance for these alloys. It appears that SCC resistance of these alloys is related to grain boundary precipitate morphology. One technique to control the grain boundary precipitate morphology is to introduce a controlled cooling procedure referred to as High Temperature Pre-precipitation (HTPP) treatment following the solution heat treatment. There is need for a detailed study of the effect of HTPP on the properties of commercial Al-Zn-Mg-Cu alloys using different intermediate temperatures. In this thesis research, the results of ten HTPP processes applied to 7075 and 7050 commercial 7xxx series alloys are presented in terms of hardness, electrical conductivity, corrosion resistance, TEM analysis of grain boundary precipitate morphology and EDS analysis of solute concentration profile at the grain boundary. Results indicate that subsequent to HTPP processing, the 7050 alloy can be precipitation aged to a higher hardness compared to 7075; this result is associated with the modification of 7050 alloy by zirconium versus chromium in 7075 alloy. HTPP heat treatment achieves better SCC resistance compared to standard T6 temper. However, it does not appear that HTPP can achieve a combination of hardness, electrical conductivity and corrosion resistance superior to standard T6 and T7X tempers. / October 2014
3

Exfoliation Corrosion Susceptibility and Mechanism of AL - Li 2060 T8E30 Aluminum Lithium Alloy in Acidic Media

Karayan, Ahmad Ivan 10 September 2015 (has links)
No description available.
4

Exfoliation corrosion kinetics of high strength aluminum alloys

Zhao, Xinyan 15 March 2006 (has links)
No description available.

Page generated in 0.1683 seconds