Spelling suggestions: "subject:"DNA damage desponse (DDR)"" "subject:"DNA damage coresponse (DDR)""
1 |
Evaluating DNA damage response (DDR) activation in human prostate cancerDelouya, Guila 30 April 2014 (has links)
Introduction: Au Canada, le cancer de la prostate est le cancer le plus fréquemment diagnostiqué chez les hommes et le plus mortel après les cancers du poumon et du côlon. Il y a place à optimiser le traitement du cancer de la prostate de manière à mettre en œuvre une médecine personnalisée qui s’adapte aux caractéristiques de la maladie de chaque patient de façon individuelle.
Dans ce mémoire, nous avons évalué la réponse aux dommages de l’ADN (RDA) comme biomarqueur potentiel du cancer de la prostate. Les lésions potentiellement oncogènes de l'ADN déclenche une cascade de signalisation favorisant la réparation de l'ADN et l’activation des points de contrôle du cycle cellulaire pour préserver l’intégrité du génome. La RDA est un mécanisme central de suppression tumorale chez l’homme. La RDA joue un rôle important dans l’arrêt de la prolifération des cellules dont les génomes sont compromis, et donc, prévient la progression du cancer en agissant comme une barrière. Cette réponse cellulaire détermine également comment les cellules normales et cancéreuses réagissent aux agents utilisés pour endommager l'ADN lors du traitement du cancer comme la radiothérapie ou la chimiothérapie, en plus la présence d,un certain niveau de RDA dans les cellules du cancer de la prostate peuvent également influer sur l'issue de ces traitements. L’activation des signaux de la RDA peut agir comme un frein au cancer dans plusieurs lésions pré-néoplasiques de l'homme, y compris le cancer de la prostate. Il a été démontré que la RDA est augmentée dans les cellules de néoplasie intra- épithéliale (PIN) comparativement aux cellules prostatiques normales. Toutefois, le devient de la RDA entre le PIN et l’adénocarcinome est encore mal documenté et aucune corrélation n'a été réalisée avec les données cliniques des patients. Notre hypothèse est que les niveaux d’activation de la RDA seront variables selon les différents grades et agressivité du cancer de la prostate. Ces niveaux pourront être corrélés et possiblement prédire les réponses cliniques aux traitements des patients et aider à définir une stratégie plus efficace et de nouveaux biomarqueurs pour prédire les résultats du traitement et personnaliser les traitements en conséquence. Nos objectifs sont de caractériser l'activation de la RDA dans le carcinome de la prostate et corréler ses données avec les résultats cliniques.
Méthodes : Nous avons utilisé des micro-étalages de tissus (tissue microarrays- TMAs) de 300 patients ayant subi une prostatectomie radicale pour un cancer de la prostate et déterminé le niveau d’expression de protéines de RDA dans le compartiment stromal et épithélial des tissus normaux et cancéreux. Les niveaux d’expression de 53BP1, p-H2AX, p65 et p-CHK2 ont été quantifiés par immunofluorescence (IF) et par un logiciel automatisé. Ces marqueurs de RDA ont d’abord été validés sur des TMAs-cellule constitués de cellules de fibroblastes normales ou irradiées (pour induire une activation du RDA). Les données ont été quantifiées à l'aide de couches binaires couramment utilisées pour classer les pixels d'une image pour que l’analyse se fasse de manière indépendante permettant la détection de plusieurs régions morphologiques tels que le noyau, l'épithélium et le stroma. Des opérations arithmétiques ont ensuite été réalisées pour obtenir des valeurs correspondant à l'activation de la RDA qui ont ensuite été corrélées à la récidive biochimique et l'apparition de métastases osseuses.
Résultats : De faibles niveaux d'expression de la protéine p65 dans le compartiment nucléaire épithélial du tissu normal de la prostate sont associés à un faible risque de récidive biochimique. Par ailleurs, nous avons aussi observé que de faibles niveaux d'expression de la protéine 53BP1 dans le compartiment nucléaire épithéliale du tissu prostatique normal et cancéreux ont été associés à une plus faible incidence de métastases
osseuses.
Conclusion: Ces résultats confirment que p65 a une valeur pronostique chez les
patients présentant un adénocarcinome de la prostate. Ces résultats suggèrent également que le marqueur 53BP1 peut aussi avoir une valeur pronostique chez les patients avec le cancer de la prostate. La validation d'autres marqueurs de RDA pourront également être corrélés aux résultats cliniques. De plus, avec un suivi des patients plus long, il se peut que ces résultats se traduisent par une corrélation avec la survie. Les niveaux d'activité de la RDA pourront éventuellement être utilisés en clinique dans le cadre du profil du patient comme le sont actuellement l’antigène prostatique spécifique (APS) ou le Gleason afin de personnaliser le traitement. / Background: Prostate cancer is the most frequently diagnosed cancer in Canadian men and is the third deadliest after lung and colon cancers. Currently, prostate cancer treatments are based on results obtained of digital rectal exam, Gleason scores from biopsy specimens and serum PSA (Prostatic Specific Antigen) levels. The identification of specific biomarkers for diagnosis and prognosis, as well as new therapeutic targets, is quickly paving the way for personalized medicine. Ideally, in the future, patient care will include molecular signature of a patient's disease to guide for a more efficient treatment.
In this thesis, we evaluated the DNA damage response (DDR) as a potential biomarker in prostate cancer. DNA lesions in mammalian cells trigger the DDR signalling cascade that orchestrates DNA repair and activate cell cycle checkpoints to preserve genome integrity. Loss of genome stability is usually associated with cancer development, and activated DDR signalling in cells with genomic instability act as a cancer barrier in several pre-neoplastic human lesions, including prostate cancer. Thus, the DDR is an important cancer suppression mechanism. The DDR is also activated in response to anti- cancer agents including radiation therapy (RT) and DNA-damaging chemotherapies. Pre- existing DDR levels in prostate cancer cells may influence the outcome of these cancer treatments. DDR signalling has been detected during human prostate cancer progression from low levels in normal prostate cells to high levels in high-grade prostatic intraepithelial neoplasia (HG-PIN). However, DDR signalling variations detected from HG-PIN to adenocarcinoma remain unclear, and no correlations were performed with patient clinical outcome data. Our hypothesis is that the levels of persistent DDR signalling activity will be variable with different grades and aggressiveness of prostate cancer. The levels of this activity could be correlated with the clinical responses to treatments and could even predict this process. We believe that having new biomarkers will help personalizing cancer treatment and certainly increase treatments’ efficiency.
Our objectives are to characterize the occurrence of DDR activation in prostate carcinoma and to correlate it with patients’ survival and responsiveness to treatment.
Methods: We used tissue microarrays (TMAs) from human radical prostatectomy specimens of 300 men with prostate cancer and estimated the level of DDR protein expression in the stromal and epithelial compartments of normal and aggressive cancer tissues. The expression level of the DDR markers p53 binding protein-1 (53BP1), phosphorylated H2AX (p-H2AX), p65 (p65 subunit of Nuclear Factor (NF-κB) and phosphorylated checkpoint kinase-2 (p-CHK2) was quantified using immunofluorescence (IF) coupled to high-content automated imaging. The quantification of our DDR markers was first validated on an experimental TMA (TMA-cell) including normal and irradiated (to induce DDR signalling) cultured human fibroblasts. The data was quantified using binary layers commonly used to classify pixels in an image so areas could be analysed independently allowing the segregation of specific compartments including nuclei, epithelia and stroma. Arithmetic operations were performed to render values corresponding to DDR activation that were then correlated with clinical outcomes such as biochemical recurrence and occurrence of bone metastasis.
Results: We found that low levels of p65 protein expression in the nuclear epithelial compartments of normal prostate tissue were associated with a reduced probability of biochemical failure (which corresponds to a rise in the serum level of PSA in prostate cancer patients following treatment, surgery in this cohort of patients). Moreover, we also observed that low levels of 53BP1 protein expression in the nuclear epithelial compartments of normal and cancerous prostate tissue were associated with a lower incidence of bone metastasis.
Conclusion: These results confirm that p65 has prognostic value in patients with prostate adenocarcinoma. Based on our results, we suggest that 53BP1 marker may have a prognostic value as well. The validation of other markers and particularly DDR markers may correlate with patients’ outcome. With longer follow-up, it may translate into correlation with survival. Levels of DDR activity in cancer tissue could be used in daily clinic as part of the patient’s diagnostic profile as much as his prostatic specific antigen (PSA) or Gleason score in order to predict response and personalize the treatment in order to guide the patients towards the most appropriate treatment amongst all those available for their prostate cancer.
|
2 |
Role of Chemokine Receptor, CXCR4 Mediated Signaling in Cellular SenescenceNair, Raji R January 2016 (has links) (PDF)
Cellular senescence has been proposed to be equivalent to organismal aging and is one of the outcomes of the cell fate decision process in response to DNA damage that occurs in cells. When a cell encounters DNA damage, the cell cycle is immediately halted to evaluate which decision to take in response to genomic insult. The choices are between repairing the damage and continue division, or enter a non-replicative but viable state called senescence or to die if damage is severe (Figure 1). The signaling cascade, which detects this damage and regulates the cell fate decision, is collectively called as DNA damage response (DDR). However, the exact mechanism of how delineation for each decision happens is still not clear. Since DNA damage works as a mediator for cell fate decision, my work aimed to study senescence as a DNA damage response.
In addition, the role of free radicals like ROS in cellular senescence is not very clear because though an increase in their concentrations is recorded in aged cells, it is not evident if the increase seen the cause or the effect of aging, primarily because they themselves capable of causing DNA damage. This conundrum have always led to confounding observations wrt role of free radicals in the cellular senescence process and if the senescence is caused through agents which rely on ROS to cause DNA damage, ROS becomes absolutely integral to the aging process. To understand this aspect formed the first line of investigation in my work along with identification of the sensor of DNA damage, which drives various cell fates.
During organismal ageing there is an accumulation of senescent cells, which could be the major reason for functional decline of tissues and organs with age. However, to study changes associated with signaling molecules with respect to ageing, a cellular model system for senescence driven through DNA damage was needed, using which interplay between senescent / aged cells and cellular niche can be established. Studying the spatial and temporal alterations in signaling dynamics, within the cell as well as with the neighbouring niche during the senescence process in anticipated to provide us better understanding about the complex process of ageing. For this, the objectives were defined to establish and characterize the DNA damage induced senescence model using various parameters, and especially study the signaling dynamics of GPCR mediated signaling in senescence. The role of chemokine receptor, CXCR4 and its ligand, CXCL12 mediated signaling was chosen for the study.
The following sections describe the findings that were obtained from the various objectives studied during the course of this study.
Section 1. Development and characterization a model system to study cellular senescence as a DNA damage response.
In this part of the study, I characterized genotoxic stress induced cellular senescence model using 5-Bromodeoxyrudine as the DNA damaging agent. BrdU, owing to its property of being a thymidine analogue, is incorporated in dividing cells, and this incorporation is recognized as DNA damage. This triggers ‘persistent’ DNA damage response signaling, including activation of ATM kinase, one of the primary DNA damage sensor. As anticipated, the DDR response detected was directly proportional to the dose of BrdU treatment and so was Reactive Oxygen Species (ROS) levels, a known senescence mediator.
Using this model system of direct DNA damage mediated DDR activation and induction of cellular senescence, the growth-arrested cells were extensively characterized for presence and quantum of most of the senescence associated markers known in literature. BrdU treated cells, which became senescent showed presence of DNA damage, morphological changes like flat, enlarged, granule rich appearance, expression of senescence associated molecular markers like p21, IL8, showed senescence associated beta galactosidase activity, refractiveness to growth factor for division, increased ROS levels, Golgi dispersion, etc. The secretome of the treated cells also showed increased secretion of inflammatory cytokines which are attributed to a senescence phenotype, called as Senescence Associated Secretory Phenotype (SASP), which triggered proliferative and migratory effect on cancer cells. Overall, in this part of the study, it was established that BrdU can cause DNA damage and induce senescence as one of the cell fate in response to the intermediate dose of damage. The senescent cells generated in the model system was established to be akin to senescence observed by replicative exhaustion of normal cells, thereby making our model applicable to the physiological studies as well.
Section 2. Insights into the role of ATM-ROS axis during senescence initiation and maintenance using DDR mediated cellular senescence model.
While the BrdU model system for generating senescent cells was being developed and characterized, it was observed that there is an increase in ATM activation as well as ROS production concomitant to the a dose of BrdU. At the same time it was also observed that senescent cells showed persistent DDR signaling and high levels of ROS. Using this premise, in the second objective of my study I aimed to identify if ATM and ROS are critical during initiation of senescence, when the cells are insulted with the DNA damaging agent or during the maintenance of senescent state of the cells. By quenching ROS during the initiation state, I recorded that ROS is not critical for inducing senescence and perhaps the increase in ROS levels in senescent cells is due to their higher metabolic activity.
By inhibiting ATM activation during DNA damage, it was observed that BrdU induces senescence through direct DNA damage, and active ATM and DDR signaling is absolutely critical for the senescence initiation. It was also established that ATM is not just a DNA damage sensor but also a redox regulator in the senescence model system. Prevention of ATM activation in presence of DNA damage blocked senescence initiation and also triggered increased ROS levels in the cells affecting their long term viability, suggesting ATM regulates ROS levels as well in addition to sensing DNA damage.
In order to study the role of ATM-ROS axis in the maintenance of senescence state, already senescent cells were subjected to ROS quenching and/ or ATM inhibition and it was identified that both these signaling molecules are essential for maintaining the viability of senescent cells. The findings from these study thereby show that senescence can be divided into two temporally distinct stages, initiation or early senescence stage and second, maintenance stage of senescence. Overall, I was able to characterize the presence of temporally linked ROS – dependent and ROS – independent events in cellular senescence, which are independently mediated by ATM kinase (Figure 1).
Dose of Genotoxic
Stress
damage
DDR Senescence
initiation
Repair Cell cycle
ATM arrest
kinase
Death
Growth
arrest Senescence
maintenance
Senescence Cell
ROS
viability
Elevated metabolism
Figure 1. Signaling cascades regulating senescence onset and maintenance mediated through DDR. Cells enter senescence state in response to DNA damage, depending on the dose of insult, through an ATM dependent and ROS independent pathway. Unlike this ATM-ROS axis is critical for the maintenance of senescent state of damaged but viable cells.
Section 3. Understanding the role of CXCR4 – CXCL12 mediated signaling in senescence.
Age dependent changes in cellular signaling are less explored and I was specifically interested in understanding how presence of senescent cells affects its microenvironment or vice versa i.e. how microenvironment affects senescent cells. In this premise the third objective of this study was defined towards identifying role of a GPCR, CXCR4 mediated signaling in cellular senescence and associated inflammation. CXCR4 is a ubiquitously expressed GPCR and it’s only known ligand is CXCL12/ SDF1 (stromal derived factor ), which is a homeostatic chemokine (i.e. its levels does not change under most physiological conditions). During characterization of DNA damage induced senescence model system, it was observed that this receptor expression is induced during DNA damage ells, which was also found to be so from data available from other gene expression studies as well.
During the course of my work, I identified that senescent cells show CXCR4 up regulation in response to DNA damage, mediated through activation of ATM kinase - HIF1 axis and plays a critical role in enhancing the senescence associated inflammatory response in presence of its ligand, CXCL12. This CXCL12 dependent enhanced inflammatory response in damaged cells was determined to be sensitive to the pertussis toxin treatment and hence dependent on G protein activation. Further downstream analysis revealed the pro-inflammatory effect of the CXCR4 receptor activation was due to cAMP level suppression post activation by the Gi subunit. Given that cAMP levels are antagonistic to inflammatory phenotype, using a library of pharmacological compound library, I also discovered that cAMP specific PDE, phophodiesterase 4A, is also involved in regulating inflammatory response during the initiation stage of cellular senescence. The screen also confirmed the involvement of previously identified molecular components such as p38 MAPK and leukotrienes in the senescence associated inflammatory phenotype.
The examination of the role of the CXCR4- CXCL12 axis in the deeply senescent cells surprisingly revealed that deeply senescent cells are refractory to CXCL12 stimulation in terms of inflammatory response, which was experimentally determined to be associated with impaired calcium release.
Overall, the findings from this part of the study revealed a novel signaling cascade where CXCR4 up regulation is a part of the DDR response in cells, which utilizes the Local Excitation Global Inhibition (LEGI) mechanism to enhance the sensitivity of the damaged cells to its ligand CXCL12. This enhanced sensitivity mediates the CXCL12 dependent inflammatory response, which aids in attracting immune cells for clearance of these damaged cells. Once the cells have entered the senescent state, the axis is physiologically down modulated and the senescent cells showed refractiveness to CXCL12 stimulation, probably to prevent persistent acute inflammation, if the senescent cells are not cleared (Figure 2).
Figure 2. CXCL12-CXCR4 axis in cellular senescence. During senescence initiation stage, when cells encounter DNA damage (Step 1), there is induction of CXCR4 receptor (Step 2), which enhances of CXCL12 mediated signaling for increased inflammatory response (Step 3). In the maintenance stage, where the cells are not cleared (Step 4), the axis is suppressed (Step 4), thereby bringing the levels of inflammatory secretome down, and thereby preventing damage to the cells (Step 5).
|
3 |
Rôles de la protéine E4F1 dans le contrôle de la réponse aux dommages de l’ADN dans le cancer du sein triple négatif / Roles of E4F1 protein in the control of the DNA damage response in triple negative breast cancerBatnini, Kalil 25 April 2019 (has links)
La protéine E4F1 découverte comme cible cellulaire de l'oncoprotéine adénovirale E1A est une protéine ubiquitaire agissant comme facteur de transcription et comme E3-ligase atypique. La protéine E4F1 interagit également directement avec plusieurs gènes suppresseurs de tumeurs et des oncoprotéines, suggérant son implication dans la tumorigénèse. Des travaux antérieurs du laboratoire, sur les fonctions cellulaires d’E4F1 dans les cellules cancéreuses ont montré que sa déplétion entraîne une mort cellulaire massive dans les Mefs transformés déficients en p53. De plus, E4F1 contrôle directement l'expression de 38 gènes, notamment impliqués dans le métabolisme cellulaire et les checkpoints du cycle cellulaire/Réponse aux dommages de l'ADN (DDR), tel que Chek1 qui code un composant majeur du checkpoint ATR/ATM. Conformément à ce rôle d’E4F1 dans la survie des cellules cancéreuses chez la souris, des patientes atteintes d'un cancer du sein triple négatif (TNBC) exprimant fortement E4F1 présentent une survie sans rechute (RFS) plus faible.Nous avons donc décidé d’étudier pour la première fois le programme transcriptionnel d’E4F1 dans les cellules humaines et d’explorer son rôle dans la survie des cellules de TNBC, avec une attention particulière pour son rôle dans la réponse aux agents de chimiothérapie.Les transcriptomes (RNAseq) de cellules SUM159 de TNBC montrent, lors de la déplétion d’E4F1, une diminution de l’expression de 147 des 276 gènes associés à la DDR. La combinaison de RNAseq et de ChIPseq révèle qu’E4F1 régule directement 57 gènes dans les cellules de TNBC humaines. Parmi ces gènes, E4F1 lui-même, CHEK1, mais aussi TTI2 et PPP5C codant pour des régulateurs post-transcriptionnels de l'axe ATM/ATR-CHK1, et définissant ainsi un "régulon" ATM/ATR-CHK1, encore inconnu et dépendant d’E4F1. TTI2 forme avec TELO2 et TTI1, le complexe TTT nécessaire au repliement correct et à la stabilité des protéines de la famille PIKK, telles qu’ATR et ATM. La phosphatase PPP5C est impliquée dans l'activation de la signalisation ATR-CHK1. Fait important, nous montrons qu’E4F1 se fixe sur et régule probablement ces trois gènes in vivo dans des tumeurs TNBC dérivées de patientes (PDTX). Dans la lignée SUM159 et les PDTX, le recrutement d’E4F1 sur ces gènes est augmenté lors du traitement avec la Gemcitabine, un agent de chimiothérapie bloquant la réplication de l’ADN. Étonnamment, nous avons révélé qu’E4F1 contrôle aussi indirectement l'expression de TELO2, un second membre du complexe TTT. Par conséquent, dans les cellules TNBC déplétées en E4F1, les taux de protéines des CHK1, TTI2, TELO2 mais aussi des kinases ATM/ATR, sont fortement diminués, entraînant une déficience de la DDR. Ainsi, les cellules SUM159 déplétées en E4F1 ne parviennent pas à s'arrêter en phase S lors du traitement à la Gemcitabine et sont hautement sensibilisées à cet agent de chimiothérapie, ainsi qu'à d'autres agents endommageant l'ADN comme le Cisplatine. Dans leur ensemble, mes travaux de thèse révèlent que la voie de signalisation ATM/ATR-CHK1, et la réponse au stress / dommages de l'ADN sont étroitement contrôlées aux niveaux transcriptionnel et post-transcriptionnel par E4F1. E4F1 apparait donc comme un acteur central dans la survie cellulaire des cellules TNBC, en particulier lorsqu'elles sont exposées à des agents endommageant l'ADN ou à des agents de chimiothérapie. Ainsi E4F1 pourrait représenter un marqueur pronostique de réponse à la chimiothérapie et une cible thérapeutique potentielle. / The E4F1 protein discovered as the cellular target of the adenoviral oncoprotein E1A is a ubiquitous protein acting both as a transcription factor and as an atypical E3-ligase. E4F1 protein also interacts directly with several cellular tumor suppressors and oncoproteins, suggesting its involvement in tumorigenesis. Previous laboratory work on the cellular functions of E4F1 in cancer cells has shown that its depletion leads to massive cell death in transformed Mefs deficient in p53. In addition, E4F1 directly controls the expression of 38 genes, including genes involved in cell metabolism and cell cycle checkpoints/DNA Damage Response (DDR), such as Chek1 that encodes a major component of the ATR/ATM checkpoint. Consistent with this role of E4F1 in cancer cell survival in mice, patients with triple-negative breast cancer (TNBC) with high E4F1 expression exhibit a poorer relapse free survival (RFS).We therefore aimed to study for the first time the transcriptional program of E4F1 in human cells and explore its role in the survival of TNBC cells, with particular focus on its role in the response to chemotherapy agents.Transcriptomes (RNAseq) of SUM159 TNBC cells show, when E4F1 is depleted, a decrease in expression of 147 out of 276 DDR-associated genes. The combination of RNAseq and ChIPseq shows that E4F1 directly regulates 57 genes in human TNBC cells. Among these genes, E4F1 itself, CHEK1, but also TTI2 and PPP5C coding for post-transcriptional regulators of the ATM/ATR-CHK1 axis, and thus defining an ATM/ATR-CHK1 "regulon", undescribed and E4F1-dependent. TTI2 composes with TELO2 and TTI1, the TTT complex required for the correct folding and stability of PIKK family proteins, such as ATR and ATM. PPP5C phosphatase is involved in the activation of ATR-CHK1 signaling. Importantly, we show that E4F1 binds to and probably regulates these three genes in vivo in Patient Derived TNBC Xenografts (PDTX). In both SUM159 cells and PDTX, the recruitment of E4F1 on these genes is increased upon Gemcitabine treatment, a chemotherapy agent that impairs DNA replication. Surprisingly, we found that E4F1 also indirectly controls the expression of TELO2, a second member of the TTT complex. Consequently, in TNBC cells depleted of E4F1, the protein levels of CHK1, TTI2, TELO2 but also ATM/ATR kinases, are significantly decreased, leading to DDR deficiency. Thus, SUM159 cells depleted of E4F1 fail to stop in phase S during Gemcitabine treatment and are highly sensitized to this chemotherapy agent, as well as other DNA damaging agents such as Cisplatin. Altogether, my thesis results demonstrate that the ATM/ATR-CHK1 signaling pathway, and the response to stress / DNA damage are tightly controlled at the transcription and post-transcription levels by E4F1. E4F1 therefore appears to be a central actor in the cellular survival of TNBC cells, particularly when exposed to DNA-damaging agents or chemotherapy agents. Thus, E4F1 could represent a prognostic marker for chemotherapy response and a potential therapeutic target.
|
4 |
Physiological And Exogenous Means of Regulating DNA Damage Response : Insights into Mechanisms of DNA Repair And Genomic InstabilitySebastian, Robin January 2016 (has links) (PDF)
Maintenance of genomic integrity with high fidelity is of prime importance to any organism. An insult which may result in compromised genome integrity is prevented or its consequences are monitored by advanced cellular networks, collectively called the DNA damage response (DDR). Various DNA repair pathways, which are part of DDR, constantly correct the genome in the event of any undesirable change in the genetic material and prevent the transmission of any impairment to daughter cells. Non homologous DNA end joining (NHEJ) is the predominant DNA repair pathway associated with DDR in higher eukaryotes, correcting double-strand breaks (DSBs). Microhomology mediated end joining (MMEJ), an alternate mechanism to NHEJ also exists in cells, which is associated with erroneous joining of broken DNA, leading to mutagenesis. DDR is of paramount importance in cellular viability and therefore, any defects in DDR or the imbalance of repair pathways contribute to mutations, cellular transformations and various neurodegenerative and congenital abnormalities. Here, we investigate the DDR via NHEJ and MMEJ pathways during embryonic development in mice as well as in presence of an environmental pollutant, Endosulfan, in order to understand how physiological and exogenous factors condition the balance of repair pathways.
Among various classes of pesticides known to cause side effects, organochlorine pesticides (OCPs) lead the list, possessing high transport potential, and a variety of toxic and untoward health effects. Endosulfan is a widely used organochlorine pesticide and is speculated to be detrimental to human health. However, very little is known about mechanism of its genotoxicity. Using in vivo and ex vivo model systems, we showed that exposure to Endosulfan induced reactive oxygen species (ROS) in a concentration dependent manner. Using an array of assays and equivalents of sub-lethal concentrations comparable to the detected level of Endosulfan in humans living in active areas of exposure, we demonstrated that ROS production by Endosulfan resulted in DNA double-strand breaks in mice, rats and human cells. In mice, the DNA damage was predominantly detected in type II pneumocytes of lung tissue; spermatogonial mother cells and primary spermatids of testes. Importantly, Endosulfan-induced DNA damage evoked DDR, which further resulted in elevated levels of classical NHEJ. However, sequence analyses of NHEJ junctions revealed that Endosulfan treatment resulted in extensive processing of broken DNA, culminating in increased and long junctional deletions, thereby favouring erroneous repair. We also find that exposure to Endosulfan led to significantly increased levels of MMEJ, which is a LIGASE III dependent, alternative, non classical repair pathway, encompassing long deletions and processing of DNA. Further, we show that the differential expression of proteins following exposure to Endosulfan correlated with activation of alternative DNA repair.
At the physiological level, using mouse model system, we showed that exposure to Endosulfan affected physiology and cellular architecture of organs and tissues. Among all organs, damage to testes was extensive and it resulted in death of different testicular cell populations. We also found that the damage in testes resulted in qualitative and quantitative defects during spermatogenesis in a time dependent manner, increasing epididymal ROS levels and affecting sperm chromatin integrity. This further culminated in reduced number of epididymal sperms and actively motile sperms, which finally resulted in reduced fertility in male but not in female mice.
Repair of DSBs is important for maintaining genomic integrity during the successful development of a fertilized egg into a whole organism. To date, the mechanism of DSB repair in post implantation embryos has been largely unknown except for the differential requirement of DNA repair genes in the course of development. These studies relied on null mutation analysis of animal phenotypes and therefore a quantitative understanding of repair pathways was absent. In the present study, using a cell free repair system derived from different embryonic stages of mice, we found that canonical NHEJ is predominant at 14.5 day of embryonic development. Interestingly, all types of DSBs tested were repaired by LIGASE IV/XRCC4 and Ku-dependent classical NHEJ. Characterization of end-joined junctions and expression studies further showed evidence for C-NHEJ. Strikingly, we observed non canonical end joining accompanied by DSB resection, dependent on microhomology and LIGASE III in 18.5-day embryos. Further we observed an elevated expression of CtIP, MRE11, and NBS1 at this stage, suggesting that it could act as a switch between classical and microhomology-mediated end joining at later stages of embryonic development. Keeping these observations in mind, we wondered if Endosulfan affected the differential regulation of DDR during development, similar to mice tissues. Upon analysing the effect of endosulfan on NHEJ/MMEJ at above mentioned stages of mouse embryonic development, we found that C-NHEJ efficiency remained low or unaltered while the efficiency of MMEJ was upregulated significantly, perturbing the repair balance during embryo development and hence facilitating mutagenic repair.
Thus, our results establish the existence of both classical and non classical NHEJ pathways during the post implantation stages of mammalian embryonic development. Our studies also provide deeper insights into physiological and molecular events leading to male infertility upon Endosulfan exposure and its impact on impairing the differential regulation of DNA repair during embryonic development. Our findings suggest the plasticity of DNA repair pathways in physiological and pathological conditions and provide insights into mechanism of genome instability due to DNA repair imbalance, when exposed to environmental mutagens.
|
5 |
Chromozomální poškození a kapacita opravy DNA v periferních lymfocytech jako ukazatelé karcinogeneze. / Chromosomal damage and DNA repair capacity in blood lymphocytes as transient markers in carcinogenesis.Kroupa, Michal January 2013 (has links)
Recent knowledge suggests that the onset of cancer is modulated by the interplay of internal and external environmental factors along with numerous gene variants. Structural chromsomal aberrations in peripheral blood lymphocytes are considered as biomarkers of effect of genotoxic carcinogens and reflect elevated risk of cancer. Incomplete or deficient repair of double-strand breaks in DNA underlie chromosomal aberrations and the measurement of cytogenetic alterations may reflect interindividual differences in the response towards the mutagen. In this study the expected deficiences in the DNA repair capacity have been determined in incident oncological patients with breast, colorectal and urogenital cancers. The determination of chromosomal aberrations have been supplemented by the measurement of variants in genes involved in double-strand breaks repair (XRCC3, rs861539; RAD54L, rs1048771). Methodologically, we employed conventional cytogenetic analysis, cytogenetic analysis following the induction of chromocomal damage by bleomycin ("Challenge assay"), TaqMan discrimination analysis for the detection of allelic variants and statistical analyses. By using these methods we did not observe statistically signifiant differences either in chromosomal breaks (p=0,354) or in a percentage of cells with...
|
Page generated in 0.0755 seconds