• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 2
  • 1
  • Tagged with
  • 12
  • 12
  • 6
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Transgenerational effect in \kur{Taraxacum brevicorniculatum}: test of a novel method of experimental plant DNA demethylation and its practical application in exploring the impact of maternal competition on progeny phenotype

DVOŘÁKOVÁ, Hana January 2016 (has links)
Spray application of 5­azacytidine on established plant seedlings was tested for its demethylating efficiency, as it represents a novel method for plant experimental demethylation with a potentially lower negative impact on plant development compared to the traditional application of the demethytaling agent through germination of seeds in its solution. Further, the 5­azacytidine spray application was used in practice to erase the epigenetic memory in offspring of Taraxacum brevicorniculatum plants from different competitive conditions. The impact of parental competition on the juvenile phenotype was estimated by measuring growth related traits, while the experimental demethylation allowed for evaluating the significance of DNA methylation marks in bioticaly induced transgenerational effects in T. brevirorniculatum.
2

Generation and Characterization of Induced Pluripotent Stem Cells from Aid-deficient Mice / Aid欠損マウスからのiPS細胞誘導と性質評価

Shimamoto, Ren 23 July 2014 (has links)
Shimamoto R, Amano N, Ichisaka T, Watanabe A, Yamanaka S, et al. (2014) Generation and Characterization of Induced Pluripotent Stem Cells from Aid-Deficient Mice. PLoS ONE 9(4): e94735. doi:10.1371/journal.pone.0094735 / 京都大学 / 0048 / 新制・課程博士 / 博士(医科学) / 甲第18515号 / 医科博第56号 / 新制||医科||4(附属図書館) / 31401 / 京都大学大学院医学研究科医科学専攻 / (主査)教授 斎藤 通紀, 教授 平家 俊男, 教授 山田 泰広 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
3

Papel do miR-29a na regulação epigenética de células pluripotentes humanas / The role of miR-29a in epigenetic regulation of human pluripotent cells

Leite, Sarah Blima Paulino 31 August 2017 (has links)
As células-tronco embrionárias (CTEs), extraídas da massa celular interna do blastocisto, tem como características principais a capacidade de auto-renovação e a pluripotência. Durante o desenvolvimento, as células perdem seu potencial de diferenciação e adquirem um perfil de expressão gênica mais restrito, modulado por mecanismos epigenéticos, assim como por microRNAs. Membros da família miR-29 têm como transcritos alvos enzimas responsáveis pela metilação da citosina em 5mC (DNMT3a e 3b) e também da desmetilação (TET1, 2 e 3) do DNA, pela hidroxilação de 5mC em 5hmC. Recentes trabalhos sugerem que a modulação do miR-29 sobre estes alvos teria um papel no início da diferenciação em CTEs de camundongos e no aumento de eficiência da geração de iPS em células humanas. No presente trabalho, buscou-se compreender o papel regulatório do miR-29a em seus alvos epigenéticos no contexto da pluripotência e no início da diferenciação com atRA. Para tanto, duas linhagens celulares pluripotentes humanas (H1 e NTera- 2) foram submetidas a indução de diferenciação com atRA e ao ganho de função do miR-29a durante quatro dias de cultivo para análises de expressão gênica. Ademais, em NT2, realizamos ensaios funcionais por microscopia de imunofluorescência quantitativa para avaliar os efeitos do ganho e perda de função do miR-29a, DNMT3b e TET1, sobre a expressão nuclear de OCT4 e os perfis globais de 5mC e 5hmC após 96 horas de transfecção. Neste ensaio, também avaliamos o papel específico da regulação pós-transcricional de DNMT3b e TET1 pelo miR-29a, utilizando moléculas bloqueadoras dos sítios alvo (TSB) do miR-29a nestes transcritos. Observamos que sob a indução do atRA, os níveis de expressão do miR- 29a e de seus genes alvos (com exceção de DNMT3b), assim como dos marcadores de endoderme e ectoderme, aumentaram, seguido da diminuição dos marcadores de pluripotência em ambas as linhagens. A transfecção de moléculas mímicas do miR-29a, reduziu os níveis de seus transcritos alvos após dois e quatro dias em NT2 e H1, além de reduzir os níveis nucleares de DNMT3b em NT2. Ainda, ocorreu um aumento na expressão de genes da endoderme, mesoderme e ectoderme em H1 e a queda da expressão gênica e nuclear de OCT4 em NT2. Com o uso de siRNA específicos, demonstramos que o knockdown dos níveis nucleares de DNMT3b foi acompanhado de uma queda nos níveis globais de 5mC e um aumento de OCT4 e de 5hmC. Já o knockdown de TET1, elevou os níveis de 5mC, mas também os níveis de 5hmC e OCT4 nuclear. As avaliações com o uso de TSB contra os sítios de ligação do miR-29a em seus transcritos alvo, TET1 e DNMT3b, demonstraram que em células NT2, o bloqueio da ligação do miR endógeno aos seus alvos resultam no aumento dos níveis globais de 5hmC, indicando que a regulação póstranscricional destes alvos pelo miR-29 teria um importante papel na regulação epigenética de células pluripotentes. / Embryonic stem cells (CTEs), extracted from the internal cell mass of the blastocyst, are main characterized by the capacity for self-renewal and pluripotency. During development, the cells lose their differentiation potential and acquire a restricter gene expression profile, modulated by epigenetic mechanisms, as microRNAs. Members of the miR-29 family have as target transcripts enzymes for cytosine methylation in 5mC (DNMT3a and 3b) and for DNA demethylation (TET1, 2 and 3), by hydroxylation of 5mC in 5hmC. Recent studies suggest that the modulation of miR-29 on these targets plays a role in early differentiation of mouse CTEs and in increasing human iPS cell generation efficiency. In the present study, we sought to understand the regulatory role of miR-29a in its epigenetic targets in the context of pluripotency and in early differentiation with atRA. For this, two human pluripotent cell lines (H1 and NTera-2) were submitted to differentiation induction with atRA and function gain of miR-29a during four days of culture for gene expression analysis. Furthermore, in NT2, we performed functional assays by quantitative immunofluorescence microscopy to evaluate the gain- and loss-of-function of miR-29a, DNMT3b and TET1 in the OCT4 nuclear expression and global profiles of 5mC and 5hC, 96 hours posttransfection. In this assay, we also evaluated the specific role of post-transcriptional regulation of DNMT3b and TET1 by miR-29a, using target site blocking molecules (TSB) of miR-29a. We observed that under the induction of atRA, the miR-29a expression levels and its target genes (except of DNMT3b), further the markers of endoderm and ectoderm, increased, followed by decreased pluripotency markers in both cell lines. Transfection of mimic molecules of miR-29a reduced the levels of their target transcripts after two and four days in NT2 and H1, and reduced nuclear levels of DNMT3b in NT2. In addition, the expression of endoderm, mesoderm and ectoderm genes increased in H1 and gene and nuclear expression of OCT4 decreased in NT2. With the use of specific siRNA, we demonstrated that the knockdown of nuclear levels of DNMT3b was accompanied by a drop in global 5mC levels and an increase of OCT4 and 5hmC. While, the knockdown of TET1 increased the levels of 5mC, 5hmC and nuclear OCT4. Evaluations using TSB against the miR- 29a binding sites in their target transcripts, TET1 and DNMT3b, show that in NT2 cells blocking the binding of endogenous miR to their targets results in an increase in global 5hmC levels, indicating that the post-transcriptional regulation of these targets by miR-29 would play an important role in the epigenetic regulation of pluripotent cells.
4

Papel do miR-29a na regulação epigenética de células pluripotentes humanas / The role of miR-29a in epigenetic regulation of human pluripotent cells

Sarah Blima Paulino Leite 31 August 2017 (has links)
As células-tronco embrionárias (CTEs), extraídas da massa celular interna do blastocisto, tem como características principais a capacidade de auto-renovação e a pluripotência. Durante o desenvolvimento, as células perdem seu potencial de diferenciação e adquirem um perfil de expressão gênica mais restrito, modulado por mecanismos epigenéticos, assim como por microRNAs. Membros da família miR-29 têm como transcritos alvos enzimas responsáveis pela metilação da citosina em 5mC (DNMT3a e 3b) e também da desmetilação (TET1, 2 e 3) do DNA, pela hidroxilação de 5mC em 5hmC. Recentes trabalhos sugerem que a modulação do miR-29 sobre estes alvos teria um papel no início da diferenciação em CTEs de camundongos e no aumento de eficiência da geração de iPS em células humanas. No presente trabalho, buscou-se compreender o papel regulatório do miR-29a em seus alvos epigenéticos no contexto da pluripotência e no início da diferenciação com atRA. Para tanto, duas linhagens celulares pluripotentes humanas (H1 e NTera- 2) foram submetidas a indução de diferenciação com atRA e ao ganho de função do miR-29a durante quatro dias de cultivo para análises de expressão gênica. Ademais, em NT2, realizamos ensaios funcionais por microscopia de imunofluorescência quantitativa para avaliar os efeitos do ganho e perda de função do miR-29a, DNMT3b e TET1, sobre a expressão nuclear de OCT4 e os perfis globais de 5mC e 5hmC após 96 horas de transfecção. Neste ensaio, também avaliamos o papel específico da regulação pós-transcricional de DNMT3b e TET1 pelo miR-29a, utilizando moléculas bloqueadoras dos sítios alvo (TSB) do miR-29a nestes transcritos. Observamos que sob a indução do atRA, os níveis de expressão do miR- 29a e de seus genes alvos (com exceção de DNMT3b), assim como dos marcadores de endoderme e ectoderme, aumentaram, seguido da diminuição dos marcadores de pluripotência em ambas as linhagens. A transfecção de moléculas mímicas do miR-29a, reduziu os níveis de seus transcritos alvos após dois e quatro dias em NT2 e H1, além de reduzir os níveis nucleares de DNMT3b em NT2. Ainda, ocorreu um aumento na expressão de genes da endoderme, mesoderme e ectoderme em H1 e a queda da expressão gênica e nuclear de OCT4 em NT2. Com o uso de siRNA específicos, demonstramos que o knockdown dos níveis nucleares de DNMT3b foi acompanhado de uma queda nos níveis globais de 5mC e um aumento de OCT4 e de 5hmC. Já o knockdown de TET1, elevou os níveis de 5mC, mas também os níveis de 5hmC e OCT4 nuclear. As avaliações com o uso de TSB contra os sítios de ligação do miR-29a em seus transcritos alvo, TET1 e DNMT3b, demonstraram que em células NT2, o bloqueio da ligação do miR endógeno aos seus alvos resultam no aumento dos níveis globais de 5hmC, indicando que a regulação póstranscricional destes alvos pelo miR-29 teria um importante papel na regulação epigenética de células pluripotentes. / Embryonic stem cells (CTEs), extracted from the internal cell mass of the blastocyst, are main characterized by the capacity for self-renewal and pluripotency. During development, the cells lose their differentiation potential and acquire a restricter gene expression profile, modulated by epigenetic mechanisms, as microRNAs. Members of the miR-29 family have as target transcripts enzymes for cytosine methylation in 5mC (DNMT3a and 3b) and for DNA demethylation (TET1, 2 and 3), by hydroxylation of 5mC in 5hmC. Recent studies suggest that the modulation of miR-29 on these targets plays a role in early differentiation of mouse CTEs and in increasing human iPS cell generation efficiency. In the present study, we sought to understand the regulatory role of miR-29a in its epigenetic targets in the context of pluripotency and in early differentiation with atRA. For this, two human pluripotent cell lines (H1 and NTera-2) were submitted to differentiation induction with atRA and function gain of miR-29a during four days of culture for gene expression analysis. Furthermore, in NT2, we performed functional assays by quantitative immunofluorescence microscopy to evaluate the gain- and loss-of-function of miR-29a, DNMT3b and TET1 in the OCT4 nuclear expression and global profiles of 5mC and 5hC, 96 hours posttransfection. In this assay, we also evaluated the specific role of post-transcriptional regulation of DNMT3b and TET1 by miR-29a, using target site blocking molecules (TSB) of miR-29a. We observed that under the induction of atRA, the miR-29a expression levels and its target genes (except of DNMT3b), further the markers of endoderm and ectoderm, increased, followed by decreased pluripotency markers in both cell lines. Transfection of mimic molecules of miR-29a reduced the levels of their target transcripts after two and four days in NT2 and H1, and reduced nuclear levels of DNMT3b in NT2. In addition, the expression of endoderm, mesoderm and ectoderm genes increased in H1 and gene and nuclear expression of OCT4 decreased in NT2. With the use of specific siRNA, we demonstrated that the knockdown of nuclear levels of DNMT3b was accompanied by a drop in global 5mC levels and an increase of OCT4 and 5hmC. While, the knockdown of TET1 increased the levels of 5mC, 5hmC and nuclear OCT4. Evaluations using TSB against the miR- 29a binding sites in their target transcripts, TET1 and DNMT3b, show that in NT2 cells blocking the binding of endogenous miR to their targets results in an increase in global 5hmC levels, indicating that the post-transcriptional regulation of these targets by miR-29 would play an important role in the epigenetic regulation of pluripotent cells.
5

Roles of DNA Base Excision Repair in Maintaining the Integrity of DNA Methylation

Zhou, Jing 15 November 2013 (has links)
DNA methylation and demethylation are involved in regulation of gene expression. CpG clusters have been identified as hotspots of oxidative damages and mutagenesis. DNA base excision repair can remove oxidative DNA damage on CpG clusters and mediate an active DNA demethylation pathway. In this study, we examined the molecular mechanisms underlying interactions among DNA methylation, demethylation and BER. Our results demonstrated that a single 5-methylcytosine did not exhibit a significant effect on BER. Surprisingly we found that the abasic site completely inhibited the activity of thymine DNA glycosylase (TDG) leading to the sustainment of the mismatch efficiently extended by pol β. Interestingly, APE1 3’-5’ exonuclease could removed the mismatch. Our results demonstrate a molecular mechanisms underlying DNA base lesion and BER in maintenance of a normal DNA methylation pattern and a critical role of APE1 to combat pol β extension of the mismatch thereby reducing the introduction of mutagenesis.
6

Elucidation of the Molecular Mechanisms of Gene Expressions-Epigenetics Regulation by Chemical Biology / ケミカルバイオロジーによる遺伝子発現-エピジェネティクス制御の分子機構の解明

Sato, Shinsuke 23 September 2020 (has links)
京都大学 / 0048 / 新制・論文博士 / 博士(理学) / 乙第13369号 / 論理博第1573号 / 新制||理||1666(附属図書館) / (主査)教授 杉山 弘, 教授 深井 周也, 教授 秋山 芳展 / 学位規則第4条第2項該当 / Doctor of Science / Kyoto University / DGAM
7

ROLE OF TET2 IN LUMINAL DIFFERENTIATION AND HORMONE THERAPY RESPONSE IN BREAST CANCER

Mi Ran Kim (8066174) 03 December 2019 (has links)
<p>Epigenetic mechanisms, including DNA methylation, play an important role in regulation of stem cell fate and tumorigenesis. The Ten-Eleven-Translocation 2 (TET2) is a core enzyme for DNA demethylation by catalyzing the conversion of 5-methylcytosine (5mC) to 5-hydromethylcytosine (5hmC). It has been shown that TET2 is the main regulator of hematopoietic stem cell homeostasis and loss of TET2 is highly associated with hematopoietic malignancies. Our previous work has also shown that loss of TET2 expression is linked to promotion of an epithelial-mesenchymal-transition phenotype and expansion of a breast cancer stem cell-like population with skewed asymmetric cell division in vitro; however, the in vivo role that TET2 plays in regulation of mammary stem cell (MaSC) fate and development of mammary pathology has yet to be determined. Here, using our newly established mammary-specific Tet2-knockout mouse model, the data reveals for the first time that TET2 plays a pivotal role in mammary gland development via directing MaSC to luminal lineage commitment in vivo. Furthermore, we find that TET2 coordinates with FOXP1 to target and demethylate FOXA1, GATA3, and ESR1, key transcription factors that orchestrate mammary luminal lineage specification and endocrine response and are often silenced by DNA methylation in aggressive human breast cancers. Finally, loss of TET2 expression leads to promotion of mammary tumor development with defective luminal cell differentiation and tamoxifen resistance in a PyMT;Tet2 deletion breast cancer mouse model. As a result, this study provides a previously unidentified role for TET2 in governing luminal lineage specification and endocrine response that underlies resistance to anti-estrogen treatments.</p>
8

Functional analysis of active DNA demethylation in tomato / Analyse fonctionnelle de la déméthylation d'ADN actif en tomate

Liu, Ruie 29 November 2016 (has links)
La méthylation de l'ADN génomique est l'un des principaux mécanismes épigénétiques qui conduisent à des changements stables et héréditaires de l'expression des gènes sans que cela s’accompagne de la modification de la séquence d'ADN sous-jacente. Elle fait référence à l'addition d'un groupement méthyl sur le carbone 5 des cytosines (5meC). Ces dernières années, l’étude des mécanismes régulant la mise en place et le maintien de de cette méthylation est devenu un thème de recherche importante, en raison de son rôle essentiel dans la régulation du fonctionnement du génome des plantes et des mammifères. La distribution des 5meC sur l’ensemble du génome d’un organisme, encore appelé méthylome, peut être déterminée par différentes méthodes dont le séquençage de l’ADN génomique après traitement au bisulfite de sodium (WGBS ou méthyl C séq). Chez les végétaux, la méthylation de l’ADN peut se produire dans tous les contextes de séquence incluant les motifs symétriques CG et CHG et le contexte dissymétrique CHH (H pouvant être A, T ou C). En fonction du contexte de séquence, la méthylation des cytosines est mise en place et maintenue par trois types différents d'ADN méthyltransférase. [ ] Chez la plante-modèle Arabidopsis, la déméthylation active de l'ADN joue un rôle essentiel dans l'empreinte maternelle et la déméthylation l’ADN génomique lors du développement de l’albumen, mais elles ne semblent pas jouer de rôle essentiel pendant le développement de la plante chez cette espèce. La méthylation de l’ADN génomique peut aussi être perdue après la réplication de l’ADN, lorsque les mécanismes devant assurer son maintien ne sont pas actifs. On parle alors de déméthylation passive de l’ADN génomique. [ ] En conclusion, les observations présentées dans ce travail fournissent un cadre de travail permettant d’analyser les mécanismes moléculaires responsables de la déméthylation de l'ADN se produisant pendant la maturation des fruits de tomate. Ici, nous présentons une analyse complète des conséquences d’une réduction de l’expression du gène de SlDML2 sur le trancriptome et le métabolome des fruits, tout au long de leur développement. La corrélation entre les profils d’expression de gènes réalisées lors de ce travail ( variété WVA106) et les changements de la distribution de la méthylation de l’ADN telles que décrites chez la variété Ailsa craig montre qu’en plus d'un rôle général dans la régulation des gènes directement impliqués dans plusieurs voies métaboliques, plusieurs gènes codant pour des facteurs de transcription ainsi que des régulateurs épigénétiques sont également susceptibles d'être directement contrôlés par la méthylation de leur région promotrice. Cependant, nous ne pouvions pas établir une relation stricte entre la diminution de la méthylation de l'ADN et l'induction de l'expression des gènes, car de nombreux gènes présentant une diminution du niveau de méthylation de l'ADN dans leur région promotrice pendant la maturation des fruits sauvages correspondent à des gènes normalement réprimés. Ceci suggère que la méthylation active de l'ADN serait nécessaire à leur répression pendant le processus de maturation. Ainsi la relation entre la déméthylation de l'ADN et l'expression des gènes pourrait être plus complexe et ne se limiterait pas à la simple hypothèse de départ de ce travail: la déméthylation de l'ADN est nécessaire à l'expression de gènes induits au cours de la maturation. La déméthylation active de l'ADN pourrait également être nécessaire à la répression de gènes exprimés uniquement lors des phases précoces du développement des fruits et réprimés lors du murissement. / DNA methylation is one of the epigenetic mechanisms that lead to stable and heritable changes in gene expression without alteration on DNA sequence. DNA methylation refers to the addition of a methyl group to the fifth position of the cytosine ring. In recent years, DNA methylation is becoming more and more widely studied, because of its importance in mammals and plants. Methylated cytosines distribution can be determined across the genome at single-nucleotide resolution, that is methylome, using whole genome bisulfite-sequencing (BS-seq) approaches. [ ] Solanum lycopersicum (tomato) is an important agronomic crop and the main model to study the development and ripening process of climacteric fleshy fruit. Recent studies have now shown that the development and ripening of fleshy fruits relies on the establishment and maintenance of differential transcription patterns and complex regulatory pathways that involve both genetic and hormonal controls are operating at these developmental phases. However, it appears that a full understanding of fruit development and ripening will not be achieved based only on genetic models as suggested by recent studies, which showing an important decrease in global methylation level and demethylation at specific promoters during fruit ripening. [ ] In conclusion, the observations presented in this work provide a framework for analysis of the molecular mechanism of DNA demethylation during fruit ripening of tomato. Here, we provide a comprehensive analysis of the knock down SlDML2 on the trancriptome, metaoblom and DNA methylation in the promoter analysis. The large transcriptional reprogramming that occured in mutant during fruit ripeing was correlated alterations in DNA methylation. Here we highlight the central role of active DNA demethylation during tomato fruit ripening. In addition to a general role in the regulation of genes directly involved in several metabolic pathways, we also found that several transcription factors as well as epigenetic regulators are also likely under direct methylation control. However, we could not establish a district relationship between DNA reduction of DNA methylation and induction of gene expression, as not all DEGs containing a type-a DMRs (decreased DNA methylation during fruit ripening) do not correspond to genes normally induced in WT and repressed in transgenic plants. Some were corresponding to an opposite situation and in a few cases more complex methylation pattern (several DMRs) were also found. Indeed these conclusions are based on methylation analysis obtained in another variety. They might however reflect the situation of WVA106 fruits, although some variations are expectable when the methylome of DML RNAi fruits will be analyzed. Hence the relationship between DNA demethylation and gene expression might be more complex than expected, and not limited to the starting hypothesis of this work: DNA demethylation is an absolute requirement for the expression of critical ripening induced genes. This is indeed clearly in this study, but the analysis presented here also suggest that DNA demethylation might also be necessary for the repression of several genes as well. In addition, from the rencent study in Arabidopsis, ROS1 were found preferentially targets transposable elements (TEs) which are closer to protein coding genes and intergenic regions, which suggesting that ROS1 may prevent DNA methylation spreading from TEs to nearby genes. While in tomato, as our analysis, we found the methylation level of promoter of a number of genes was altered during fruit ripening, therefore, through methylome analysis, we will also get the preference of DNA methylation on TE, this analysis will give us idea that demethylation in fleshy fruit may has other distinct function as it is in Arabidopsis.
9

DNA dioxygenases Tet2/3 regulate gene promoter accessibility and chromatin topology in lineage-specific loci to control epithelial differentiation

Chen, G-D., Fatima, I., Xu, Q,, Rozhkova, E., Fessing, Michael Y., Mardaryev, Andrei N., Sharov, A.A., Xu, G-L., Botchkarev, Vladimir A. 11 January 2023 (has links)
Yes / Execution of lineage-specific differentiation programs requires tight coordination between many regulators including Ten-eleven translocation (TET) family enzymes, catalyzing 5-methylcytosine oxidation in DNA. Here, by using Keratin 14–Cre–driven ablation of Tet genes in skin epithelial cells, we demonstrate that ablation of Tet2/Tet3 results in marked alterations of hair shape and length followed by hair loss. We show that, through DNA demethylation, Tet2/Tet3 control chromatin accessibility and Dlx3 binding and promoter activity of the Krt25 and Krt28 genes regulating hair shape, as well as regulate interactions between the Krt28 gene promoter and distal enhancer. Moreover, Tet2/Tet3 also control three-dimensional chromatin topology in Keratin type I/II gene loci via DNA methylation–independent mechanisms. These data demonstrate the essential roles for Tet2/3 in establishment of lineage-specific gene expression program and control of Dlx3/Krt25/Krt28 axis in hair follicle epithelial cells and implicate modulation of DNA methylation as a novel approach for hair growth control. / This work was supported by the National Institutes of Health grant 5R01 AR075776 (V.A.B. and A.A.S.) and grant 5R01 AR071727 (V.A.B. and A.A.S.) and the National Science Foundation of China (G.-L.X.). / Research Development Fund Publication Prize Award winner, Dec 2022.
10

Lidský endogenní retrovirus ERVWE1: transkripční aktivace a změny methylace DNA v promotorové oblasti / Human endogenous retrovirus ERVWE1: transcriptional activation and modifications of promoter DNA methylation

Dobšová, Martina January 2014 (has links)
Endogenous retrovirus ERVWE1 is an integral part of the human genome. In the course of evolution, a protein encoded by the env gene of this retrovirus - Syncytin-1 - has gained unique function in human development. It mediates cell-to-cell fusion of placental cytotrophoblasts. Receptor that binds to Syncytin-1 is expressed in different cell types. Syncytin-1-mediated fusion is essential in placenta, but it can cause disruption of tissue integrity in other cell types. ERVWE1 expression is regulated by promoter DNA methylation, transcription factor GCM1 and efficient mRNA splicing. This thesis concerns the ERVWE1 expression and its regulation in non-placental tissues. It was found out that the moderate GCM1 overexpression was not sufficient to induce Syncytin-1 expression. Neither treatment with DNA demethylation agent 5-azacytidine nor with Syncytin-1 activator forskolin was able to manage Syncytin-1 expression. This thesis extends previous findings concerning high syncytin-1 expression in seminomas. In same tissues, there was found elevated TET1 expression on mRNA level in comparison with controls. The presence of the TET1 demethylation enzyme can influence ERVWE1 promoter DNA methylation. Previously unreported splicing variant of TET1 has been found during the construction of human TET1 expression...

Page generated in 0.1069 seconds