• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 8
  • 8
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Molecular interactions of the MADS-box transcription factors

West, Adam Geoffrey January 1997 (has links)
No description available.
2

Characterization and mutations in the human sex determining factor SRY

Pontiggia, Andrea January 1998 (has links)
No description available.
3

SYNTHESIS OF BIPYRIDINE-DERIVED LIGANDS FOR DNA BINDING AND SHAPE SWITCHING

LI, XUE 08 September 2009 (has links)
The objective of this project is synthesizing bipyridine-derived ligands in order to study DNA conformational bending. The synthesis of bipyridine derivatives has been investigated. 6,6’-Dibromo-2,2’- bipyridine and small scale of 6,6’-diformyl-2,2’-bipyridine have been successfully synthesized in the laboratory. The synthesis of large amount of a direct precursor to 6,6’-diformyl-2,2’- bipyridine in an multiple step way has been achieved. The synthesis of mono functionalized pyrene derivatives and of 1,6-dissymmetrically functionalized pyrene derivatives has been heavily studied. Successfully methods have been reported in this thesis. The complete assembly of bipyridine and pyrene units into the final ligands and their model has also been studied. Palladium borylation and Suzuki-Miyaura cross-coupling have been used to successfully connect the bipyridine with pyrene units. In addition to Suzuki-Miyaura methodology, the direct coupling of N,N’-dioxide-2,2’- bipyridine with aromatic bromides under palladium catalysis has been investigated. This method could be an alternative way to access to mono-substituted 6-bipyridines, symmetrically or even asymmetrically 6,6’-disubstituted-2,2’-bipyridine derivatives. / Thesis (Master, Chemistry) -- Queen's University, 2009-09-06 01:06:41.646
4

Structural Stability of Nucleic Acids and Peptides: a Theoretical and Computational Study

Guo, Zuojun January 2012 (has links)
Thesis advisor: Udayan Mohanty / In chapter one, two simple models are used to estimate the electrostatic contributions to the stiffness of short DNA fragments. The first model views DNA as two strands that are appropriately parameterized and are wrapped helically around a straight cylinder radius equal to the radius of the DNA molecule. The potential energy of the DNA due to phosphate-phosphate electrostatic interactions is evaluated assuming that the charges interact through Debye-Hückle potentials. This potential energy is compared with the potential energy as computed using our second model in which DNA is viewed as two helical strands wrapping around a curved tube whose cross-section is a disk of radius equal to the radius of the DNA. The results are compared with counterion condensation models and experimental data (Guo et al. J. Phys. Chem. B, 2008, 112, 16163-16169). In chapter two, the fidelity of translation selection begins with the base pairing of codon-anticodon complex between the mRNA and tRNAs. Binding of cognate and near-cognate tRNAs induces 30S subunit of the ribosome to wrap around the ternary complex, EF-Tu(GTP)aa-tRNA. We have proposed that large thermal fluctuations play a crucial role in the selection process. The binding energies of over a dozen unique site-bound magnesium structural motifs are investigated and provide insights into the nature of interaction of divalent metal ions with the ribosome (Guo et al. Proc. Nat. Acad. Sci. 2011, 108, 3947-3951). In chapter three, we use extensive molecular dynamics simulations to study a series of stapled alpha helical peptides over a range of temperatures in solution. The peptides are found to exhibit substantial variations in predicted helicities that are in good agreement with the experimental value. In addition, we find significant variation in local structural flexibility of the peptides with the position of the linker, which appears to be more closely related to the observed differences in activity than the absolute alpha helical stability (Guo et al. Chem. Biol. Drug. Des. 2010, 75, 348-359.). In chapter four, the alpha helical conformation and structural stability of single and double stapled all-hydrocarbon cross-linked p53 peptides in solution and when bound to MDM2 is investigated. We determined the effects of the peptide sequence, the stereochemistry of the cross-linker, the conformation of the double bond in the alkene bridge, the length of the bridge, on the relative stability of the alpha helix structure. The conformation population distribution indicates a fully helical state and several partially folded states. The distribution of dihedral pairs of the stapled peptides in the bound state indicates a significant population around the alpha helical region. Sequences over which the linker spans tend to have the highest helical occupancy. Significant helical content is observed for a double stapled p53 peptide at 575 K. The probability to form native contacts is increased when the stapled peptides are bound to MDM2. The distribution of the end-to-end distance of the peptides is bimodal. / Thesis (PhD) — Boston College, 2012. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.
5

Single-molecule biophysics of DNA bending: looping and unlooping

Le, Tung T. 21 September 2015 (has links)
DNA bending plays a vital role in numerous cellular activities such as transcription, viral packaging, and nucleosome formation. Therefore, understanding the physics of DNA bending at the length scales relevant to these processes is one of the main keys to the quantitative description of life. However, previous studies provide a divided picture on how DNA should be modeled in strong bending condition relevant to biology. My thesis is devoted to answering how far an elastic rod model can be applied to DNA. We consider several subtle features that could potentially lead to the break-down of the worm-like chain model, such as local bendedness of the sequence and large bending angles. We used single-molecule Fluorescence Resonance Energy Transfer to track looping and unlooping of single DNA molecules in real time. We compared the measured looping and unlooping rates with theoretical predictions of the worm-like chain model. We found that the intrinsic curvature of the sequence affects the looping propensity of short DNA and an extended worm-like chain model including the helical parameters of individual base pairs could adequately explain our measurements. For DNA with random sequence and negligible curvature, we discovered that the worm-like chain model could explain the stability of small DNA loops only down to a critical loop size. Below the critical loop size, the bending stress stored in the DNA loop became less sensitive to loop size, indicative of softened dsDNA. The critical loop size is sensitive to salt condition, especially to magnesium at mM concentrations. This finding enabled us to explain several contrasting results in the past and shed new light on the energetics of DNA bending.
6

Applications of statistical mechanics to nucleic acids

Forties, Robert A. 13 September 2011 (has links)
No description available.
7

Structural Properties Of Genome Sequences - Application To Promoter Prediction

Kanhere, Aditi 02 1900 (has links) (PDF)
No description available.
8

Molecular biophysics of strong DNA bending and the RecQ DNA helicase

Harrison, Ryan M. January 2014 (has links)
Molecular biophysics is a rapidly evolving field aimed at the physics-based investigation of the biomolecular processes that enable life. In this thesis, we explore two such processes: the thermodynamics of DNA bending, and the mechanism of the RecQ DNA helicase. A computational approach using a coarse-grained model of DNA is employed for the former; an experimental approach relying heavily on single-molecule fluorescence for the latter. There is much interest in understanding the physics of DNA bending, due to both its biological role in genome regulation and its relevance to nanotechnology. Small DNA bending fluctuations are well described by existing models; however, there is less consensus on what happens at larger bending fluctuations. A coarse-grained simulation is used to fully characterize the thermodynamics and mechanics of duplex DNA bending. We then use this newfound insight to harmonize experimental results between four distinct experimental systems: a 'molecular vise', DNA cyclization, DNA minicircles and a 'strained duplex'. We find that a specific structural defect present at large bending fluctuations, a 'kink', is responsible for the deviation from existing theory at lengths below about 80 base pairs. The RecQ DNA helicase is also of much biological and clinical interest, owing to its essential role in genome integrity via replication, recombination and repair. In humans, heritable defects in the RecQ helicases manifest clinically as premature aging and a greatly elevated cancer risk, in disorders such as Werner and Bloom syndromes. Unfortunately, the mechanism by which the RecQ helicase processes DNA remains poorly understood. Although several models have been proposed to describe the mechanics of helicases based on biochemical and structural data, ensemble experiments have been unable to address some of the more nuanced questions of helicase function. We prepare novel substrates to probe the mechanism of the RecQ helicase via single-molecule fluorescence, exploring DNA binding, translocation and unwinding. Using this insight, we propose a model for RecQ helicase activity.

Page generated in 0.0472 seconds