61 |
The role of transcription factor IUF1 in the regulation of insulin gene transcription by nutrientsSmith, Stuart Barrie January 1997 (has links)
This thesis gives insight into the way that transcription of the insulin gene is regulated by nutrients. This is achieved primarily by characterising a MAP kinase pathway which links glucose metabolism to the activation of a beta cell transcription factor IUF1. An understanding of the precise mechanisms by which nutrients control beta cell function may be invaluable for the development of artificial cell lines that can be used for gene replacement therapy. A study of the E2 element of the rat II promoter illustrated that at least three factors bound to the region. These were identified as IUF1 (complex D5), USF (complex D4) and an uncharacterised factor D3. IUF1 is a beta cell specific transcription factor that has been implicated previously in glucose responsive insulin gene transcription. IUF1 binds to the insulin promoter in response to high levels of extracellular glucose. USF has been shown to be involved in the carbohydrate responsive transcription of various hepatic genes. The recently characterised stress activated (Reactivating Kinase) MAP kinase pathway was clearly shown to be involved in mediating the link between glucose metabolism within the beta cell and the binding activity of IUF1. Phosphorylation of the factor serves to induce an alteration in protein structure, which converts the factor to an active form that shows a high affinity for its DNA binding site, thus activating transcription. The RK pathway may prove to be a crucial link between nutrient metabolism and the activity of other physiological processes.
|
62 |
Structural studies on DNP binding antibodiesLeatherbarrow, Robin J. January 1983 (has links)
This thesis is concerned with structural aspects of the recognition and effector functions of antibody molecules. The recognition process is investigated in the dinitrophenyl (DNP) binding mouse IgA produced by the myeloma MOPC 315. The studies on effector functions utilize a DNP binding mouse hybridoma IgG2a to examine the role of N-glycosylation in IgG. The combining site of protein 315. The involvement of tyrosyl residues in the combining site of protein 315 was examined by preparing specifically nitrated NO<sub>2</sub>-Tyr-33<sub>H</sub> and NO<sub>2</sub>-Tyr-34<sub>L</sub> derivatives of the Fv fragment of this protein. The ionizations of tnese derivatives were studied in the presence and absence of various DNP-ligands. Perturbations to the nitrotyrosine ionizations were found to be caused by the side chains of certain of these ligands, allowing an indication of the distance of these tyrosines from the bound hapten. On examination of the compatibility of these data with the model of the combining site of protein 315 proposed by Dower <en>et al. (1977) (Biochem. J. 165, 207-225) it was found that while the location of Tyr-33<sub>H</sub> is consistent with this model, the position of Tyr-34<sub>L</sub> is not. A remodelled combining site using the modified ring-current treatment of Perkins and Dwek (1980) (Biochemistry 19, 245-258) is presented. This allows a better rationalization of the nitration data and of previous experimental observations on protein 315. The role of the conserved C 2 domain oligosaccharide of IgG. This was examined by a functional comparison of native IgG with an aglycosylated IgG preparation. Aglycosylation was acheived by cell culture of the hybridoma cells in the presence of the glycosylation inhibitor tunicamycin. The conditions for preparation and purification of this aglycosyl IgG are described. Aglycosylated IgG is found to be correctly assembled as an H<sub>2</sub>L<sub>2</sub> unit. It retains the antigen binding and Staphylococcal protein A binding abilities of the native glycosylated molecule. Using an assay system designed specifically to overcome certain problems in comparing Clq binding to different preparations of IgG it was found that the aglycosylated preparation showed only slightly reduced affinity for Clq. In addition the aglycosylated IgG is able to activate bound Cl. The above results are consistent with the structure of the Fc region being only minimally altered in the absence of oligosaccharide. The structural integrity of the aglycosylated molecule may be compromised however, as its ability to bind to monocyte Fc receptor is significantly reduced. In addition the aglycosylated molecule becomes much more susceptible to proteolytic digestion. A computational model-building analysis of the quaternary structure of Fc allows an explanation of at least some of the effects of aglycosylation in terms of reduced conformational stability of the C<sub>H</sub>2 domains.
|
63 |
The role of RAD51-like genes in the repair of DNA damage in mammalian cellsFrench, Catherine A. January 2003 (has links)
No description available.
|
64 |
Biochemical and biophysical characterisation of the domain structure of the HsdS subunit of EcoR124ISmith, Melanie Anne January 2000 (has links)
No description available.
|
65 |
Transcription regulation of hepatotoxins microcystin and nodularin from cyanobacteriaRoot, Hannah Patricia, Biotechnology & Biomolecular Sciences, Faculty of Science, UNSW January 2008 (has links)
The role and function of hepatotoxins microcystin and nodularin produced by M.aeruginosa PCC 7806 and N. spumigena NSORlO respectively have yet to be elucidated. The mode of transcriptional regulation of these toxins, incorporating DNA binding proteins, was investigated, as an attempt to further understand the key control mechanisms acting on the toxins. The DNA binding proteins that control nitrogen and iron responsive transcription, NtcA and Fur, were identified from M. aeruginosa PCC7806 and N. spumigena NSOR10. Cloning and over-expression in E. coli was followed by mobility shift assays to determine binding characteristics of NtcA and Fur to the promoters, mcyA/D and ndaA/C, those regions that control the toxin encoding gene clusters in M. aeruginosa PCC 7806 and N. spumigena NSOR10, respectively. The results from these studies suggested a role for iron and nitrogen in the transcriptional control of microcystin and nodularin. biosynthesis. As NtcA and Fur classically act to regulate nitrogen and iron dependent genes, a link may be made to the putative function and control of microcystin and nodularin. By identifying the transcription factors NtcA and Fur in these genera, a greater understanding of the link between nutrient levels in the environment and hepatotoxin production in cyanobacteria may be possible.
|
66 |
Wheat Zinc Finger Proteins Potentially Involved in Drought AdaptationMr Wing-hei Kam Unknown Date (has links)
No description available.
|
67 |
Studying the roles of conserved domains of the transcription factor Sox10 in neural crest developmentChee, Ming-chu, Daisy. January 2008 (has links)
Thesis (M. Phil.)--University of Hong Kong, 2008. / Includes bibliographical references (leaves 96-106) Also available in print.
|
68 |
Screening for activators of NF-[kappa]B using Sleeping Beauty TransposonsDasgupta, Maupali. January 2008 (has links)
Thesis (Ph. D.)--Kent State University, 2008. / Title from PDF t.p. (viewed July 17, 2008). Advisor: George R. Stark. Keywords: NF-[kappa]B, RIP1, Transposons, TNF, Insertional Mutagenesis. Includes bibliographical references (p. 115-134).
|
69 |
Development and characterization of a new assay to examine telomere-protein interactions in vivo /Bourns, Brenda, January 1997 (has links)
Thesis (Ph. D.)--University of Washington, 1997. / Vita. Includes bibliographical references (leaves [116]-123).
|
70 |
Advancement of the timing of origin activation by a cis-acting DNA element /Kolor, Katherine, January 1997 (has links)
Thesis (Ph. D.)--University of Washington, 1997. / Vita. Includes bibliographical references (leaves [137]-147).
|
Page generated in 0.1116 seconds