• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 16
  • 16
  • 11
  • 9
  • 8
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mycobacterial non-homologous end-joining : molecular mechanisms and components of a novel DNA double strand break repair pathway /

Stephanou, Nicolas Constantinos. January 2008 (has links)
Thesis (Ph. D.)--Cornell University, May, 2008. / Vita. Includes bibliographical references (leaves 162-177).
2

The potential role of TOP2B in therapy-related leukaemia

Smith, Kayleigh Ann January 2012 (has links)
No description available.
3

The pathways and outcomes of mycobacterial NHEJ depend on the structure of the broken DNA ends /

Aniukwu, Jideofor Flint. January 2008 (has links)
Thesis (Ph. D.)--Cornell University, May, 2008. / Vita. Includes bibliographical references (leaves 125-133).
4

Exploiting DNA Repair and ER Stress Response Pathways to Induce Apoptosis in Glioblastoma Multiforme: A Dissertation

Weatherbee, Jessica L. 05 August 2016 (has links)
Glioblastoma multiforme (GBM) is a deadly grade IV brain tumor characterized by a heterogeneous population of cells that are drug resistant, aggressive, and infiltrative. The current standard of care, which has not changed in over a decade, only provides GBM patients with 12-14 months survival post diagnosis. We asked if the addition of a novel endoplasmic reticulum (ER) stress inducing agent, JLK1486, to the standard chemotherapy, temozolomide (TMZ), which induces DNA double strand breaks (DSBs), would enhance TMZ’s efficacy. Because GBMs rely on the ER to mitigate their hypoxic environment and DNA repair to fix TMZ induced DSBs, we reasoned that DSBs occurring during heightened ER stress would be deleterious. Treatment of GBM cells with TMZ+JLK1486 decreased cell viability and increased cell death due to apoptosis. We found that TMZ+JLK1486 prolonged ER stress induction, as indicated by elevated ER stress marker BiP, ATF4, and CHOP, while sustaining activation of the DNA damage response pathway. This combination produced unresolved DNA DSBs due to RAD51 reduction, a key DNA repair factor. The combination of TMZ+JLK1486 is a potential novel therapeutic combination and suggests an inverse relationship between ER stress and DNA repair pathways.
5

Role of TRM2RNC1 endo-exonuclease in DNA double strand break repair

Choudhury, Sibgat Ahmed. January 2007 (has links)
DNA double strand breaks (DSB) are the most toxic of all types of DNA lesions. In Saccharomyces cerevisiae, DNA DSBs are predominantly repaired by the homologous recombination repair (HRR) pathway. The initial step of HRR requires extensive processing of DNA ends from the 5' to 3' direction by specific endo-exonuclease(s) (EE) at the DSB sites, but no endo-exonuclease(s) has yet been conclusively determined for such processing of DSBs. S. cerevisiae TRM2/RNC1 is a candidate endo-exonuclease that was previously implicated for its role in the HRR pathway and was also shown to have methyl transferase activity primarily located at its c-terminus. / In this dissertation, we provided compelling biochemical and genetic evidence that linked TRM2/RNC1 to the DNA end processing role in HRR. Trm2/Rnc1p purified with a small calmodulin binding peptide (CBP) tag displayed single strand (ss) specific endonuclease and double strand (ds) specific 5' to 3' exonuclease activity characteristic of endo-exonucleases involved in HRR. Intriguingly, purified Trm2/Rnc1p deleted for its C-terminal methyl transferase domain retained its nuclease activity but not the methyl transferase activity indicating that the C-terminal part responsible for its methyl transferase function is not required for its nuclease activity. / Our genetic and functional studies with S. cerevisiae trm2/rnc1 single mutants alone or in combination with other DNA DSB repair mutants after treatment with the DNA damaging drug methyl methane sulfonate (MMS) or IR that is believed to produce DSBs, or with specific induction of DNA DSBs at the MAT locus by HO-endonuclease demonstrated an epistatic relationship of TRM2/RNC1 with the major recombination factor RAD52. These studies suggested that TRM2/RNC1 probably acts at an earlier step than RAD52 in the HRR pathway. The genetic evidence also indicated a possible functional redundancy with the bona fide endo-exonuclease EXO1 in the processing of DNA ends at the DSB sites. / In a recent report, the immuno-purified mouse homologue of TRM2/RNC1 exhibited similar enzymatic properties as the endo-exonucleases involved in HRR. A small molecular inhibitor pentamidine specifically inhibited the nuclease activity of the mouse EE and sensitized various cancer cells to DNA damaging agents commonly used in cancer chemotherapy. We specifically suppressed expression of the mouse EE using small interfering RNA (siRNA) that conferred sensitivity of B16F10 melanoma cells to a variety of DNA damaging drugs often used in cancer treatment. This further validated our earlier claim of the endo-exonuclease as a potential therapeutic target in treating cancer.
6

The identification of proteins interacting with the 53BP1 tandem Tudor domains

Chang, Kai-Wei. January 1900 (has links)
Thesis (M.Sc.). / Written for the Division of Experimental Medicine. Title from title page of PDF (viewed 2009/06/19). Includes bibliographical references.
7

RNA-binding motifs of hnRNP K are critical for induction of antibody diversification by activation-induced cytidine deaminase / hnRNP KのRNA結合モチーフはAIDによる抗体多様性に必須である

Yin, Ziwei 27 July 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医科学) / 甲第22698号 / 医科博第113号 / 新制||医科||8(附属図書館) / 京都大学大学院医学研究科医科学専攻 / (主査)教授 竹内 理, 教授 椛島 健治, 教授 河本 宏 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
8

Role of TRM2RNC1 endo-exonuclease in DNA double strand break repair

Choudhury, Sibgat Ahmed. January 2007 (has links)
No description available.
9

A mechanism for oxidative damage repair at gene regulatory elements

Swagat, R., Abugable, A.A., Parker, J., Liversidge, K., Palminha, N.M., Liao, C., Acosta-Martin, A.E., Souza, C.D.S., Jurga, Mateusz, Sudbery, I., El-Khamisy, Sherif 01 November 2023 (has links)
Yes / Oxidative genome damage is an unavoidable consequence of cellular metabolism. It arises at gene regulatory elements by epigenetic demethylation during transcriptional activation1,2. Here we show that promoters are protected from oxidative damage via a process mediated by the nuclear mitotic apparatus protein NuMA (also known as NUMA1). NuMA exhibits genomic occupancy approximately 100 bp around transcription start sites. It binds the initiating form of RNA polymerase II, pause-release factors and single-strand break repair (SSBR) components such as TDP1. The binding is increased on chromatin following oxidative damage, and TDP1 enrichment at damaged chromatin is facilitated by NuMA. Depletion of NuMA increases oxidative damage at promoters. NuMA promotes transcription by limiting the polyADP-ribosylation of RNA polymerase II, increasing its availability and release from pausing at promoters. Metabolic labelling of nascent RNA identifies genes that depend on NuMA for transcription including immediate-early response genes. Complementation of NuMA-deficient cells with a mutant that mediates binding to SSBR, or a mitotic separation-of-function mutant, restores SSBR defects. These findings underscore the importance of oxidative DNA damage repair at gene regulatory elements and describe a process that fulfils this function.
10

Chromatin Regulators and DNA Repair: A Dissertation

Bennett, Gwendolyn M. 19 December 2014 (has links)
DNA double-strand break (DSB) repair is essential for maintenance of genome stability. However, the compaction of the eukaryotic genome into chromatin creates an inherent barrier to any DNA-mediated event, such as during DNA repair. This demands that there be mechanisms to modify the chromatin structure and thus access DNA. Recent work has implicated a host of chromatin regulators in the DNA damage response and several functional roles have been defined. Yet the mechanisms that control their recruitment to DNA lesions, and their relationship with concurrent histone modifications, remain unclear. We find that efficient DSB recruitment of many yeast chromatin regulators is cell-cycle dependent. Furthering this, we find recruitment of the INO80, SWR-C, NuA4, SWI/SNF, and RSC enzymes is inhibited by the non-homologous end joining machinery, and that their recruitment is controlled by early steps of homologous recombination. Strikingly, we find no significant role for H2A.X phosphorylation (γH2AX) in the recruitment of chromatin regulators, but rather that their recruitment coincides with reduced levels of γH2AX. We go on to determine the chromatin remodeling enzyme Fun30 functions in histone dynamics surround a DSB, but does not significantly affect γH2AX dynamics. Additionally, we describe a conserved functional interaction among the chromatin remodeling enzyme, SWI/SNF, the NuA4 and Gcn5 histone acetyltransferases, and phosphorylation of histone H2A.X. Specifically, we find that the NuA4 and Gcn5 enzymes are both required for the robust recruitment of SWI/SNF to a DSB, which in turn promotes the phosphorylation of H2A.X.

Page generated in 0.0485 seconds