11 |
DNA Polymerase λ Can Elongate on Dna Substrates Mimicking Non-Homologous End Joining and Interact With XRCC4-Ligase IV ComplexFan, Wei, Wu, Xiaoming 29 October 2004 (has links)
Non-homologous end joining (NHEJ) is one of two pathways responsible for the repair of double-strand breaks in eukaryotic cells. The mechanism involves the alignment of broken DNA ends with minimal homology, fill in of short gaps by DNA polymerase(s), and ligation by XRCC4-DNA ligase IV complex. The gap-filling polymerase has not yet been positively identified, but recent biochemical studies have implicated DNA polymerase λ (pol λ), a novel DNA polymerase that has been assigned to the pol X family, in this process. Here we demonstrate that purified pol λ can efficiently catalyze gap-filling synthesis on DNA substrates mimicking NHEJ. By designing two truncated forms of pol λ, we also show that the unique proline-rich region in pol λ plays a role in limiting strand displacement synthesis, a feature that may help its participation in in vivo NHEJ. Moreover, pol λ interacts with XRCC4-DNA ligase IV via its N-terminal BRCT domain and the interaction stimulates the DNA synthesis activity of pol λ. Taken together, these data strongly support that pol λ functions in DNA polymerization events during NHEJ.
|
12 |
Methylation of DNA Ligase 1 by G9a/GLP Recruits UHRF1 to Replicating DNA and Regulates DNA Methylation / G9a/GLP複合体によりメチル化されたDNAリガーゼ1はUHRF1をDNA複製の場にリクルートしDNAメチル化を制御するTsusaka, Takeshi 26 March 2018 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医科学) / 甲第21028号 / 医科博第89号 / 新制||医科||6(附属図書館) / 京都大学大学院医学研究科医科学専攻 / (主査)教授 斎藤 通紀, 教授 浅野 雅秀, 教授 玉木 敬二 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
|
13 |
Error-prone DNA repair in the African swine fever virus: characterization of six abasic site processing activities and evidence for a mutagenic functionLamarche, Brandon James 04 August 2005 (has links)
No description available.
|
14 |
Molecular basis for the structural role of human DNA ligase IV / Base moléculaire pour le rôle structural de l'ADN humain Ligase IVDe Melo, Abinadabe Jackson 19 September 2016 (has links)
Les défauts dans la réparation des cassures double-brin de l'ADN (DSBs) peuvent avoir d'importantes conséquences pouvant entrainer une instabilité génomique et conduire à la mort cellulaire ou au développement de cancers. Dans la plupart des cellules mammifères, le mécanisme de Jonction des Extrémités Non Homologues (NHEJ) est le principal mécanisme de réparation des DSBs. L'ADN Ligase IV (LigIV) est une protéine unique dans sa capacité à promouvoir la NHEJ classique. Elle s'associe avec deux autres protéines structuralement similaires, XRCC4 et XLF (ou Cernunnos). LigIV interagit directement avec XRCC4 pour former un complexe stable, tandis que l'interaction entre XLF et ce complexe est médiée par XRCC4. XLF stimule fortement l'activité de ligation du complexe LigIV/XRCC4 par un mécanisme encore indéterminé. Récemment, un rôle structurel non catalytique a été attribué à LigIV (Cottarel et al., 2013). Dans le travail de thèse présenté ici, nous avons reconstitué l'étape de ligation de la NHEJ en utilisant des protéines recombinantes produites dans des bactéries afin d’une part, d'explorer les bases moléculaires du rôle structural de LigIV, d’autre part de comprendre le mécanisme par lequel XLF stimule le complexe de ligation, et enfin de mieux comprendre comment ces trois protéines coopèrent au cours de la NHEJ. Nos analyses biochimiques suggèrent que XLF via son interaction avec XRCC4 lié à LigIV, pourrait induire un changement conformationnel dans la LigIV. Ce réarrangement de la ligase exposerait son interface de liaison à l'ADN ce qui lui permettrait alors de ponter deux molécules indépendantes d'ADN, une capacité indépendante de l'activité catalytique de LigIV. / Failure to repair DNA double-strand breaks (DSBs) may have deleterious consequences inducing genomic instability and even cell death. In most mammalian cells, Non-Homologous End Joining (NHEJ) is a prominent DSB repair pathway. DNA ligase IV (LigIV) is unique in its ability to promote classical NHEJ. It associates with two structurally related proteins called XRCC4 and XLF (aka Cernunnos). LigIV directly interacts with XRCC4 forming a stable complex while the XLF interaction with this complex is mediated by XRCC4. XLF strongly stimulates the ligation activity of the LigIV/XRCC4 complex by an unknown mechanism. Recently, a structural noncatalytic role of LigIV has been uncovered (Cottarel et al., 2013). Here, we have reconstituted the end joining ligation step using recombinant proteins produced in bacteria to explore not only the molecular basis for the structural role of LigIV, but also to understand the mechanism by which XLF stimulates the ligation complex, and how these three proteins work together during NHEJ. Our biochemical analysis suggests that XLF, through interactions with LigIV/XRCC4 complex, could induce a conformational change in LigIV. Rearrangement of the LigIV would expose its DNA binding interface that is able to bridge two independent DNA molecules. This bridging ability is fully independent of LigIV’s catalytic activity. We have mutated this interface in order to attempt to disrupt the newly identified DNA bridging ability. In vitro analysis of this LigIV mutant will be presented as well as a preliminary in vivo analysis.
|
15 |
A complex interplay of regulatory domains controls cell cycle dependent subnuclear localization of DNMT1 and is required for the maintenance of epigenetic informationEaswaran, Hariharan P. 20 April 2004 (has links)
DNA-Methylierung spielt eine wichtige Rolle bei der Kontrolle der Chromatinorganisation und Genregulation in höheren Eukaryoten und muss zusammen mit der genetischen Information in jedem Zellzyklus dupliziert werden. Bei Mammalia wird DNA durch die DNA-Methyltransferase 1 (DNMT1) methyliert, die dabei mit nuklearen Replikationsstellen (RF) assoziiert und so die Erhaltung des Methylierungsmusters mit der Duplikation der DNA verbindet. In dieser Arbeit wurden die Funktion der regulatorischen Sequenzen in der N-terminalen Domäne von DNMT1 bei der Kontrolle ihrer subnuklearen Lokalisierung während des Zellzyklus und die evolutionäre Konservierung dieser Sequenzen, sowie die Mechanismen die eine Assoziation von Proteinen mit RF vermitteln, untersucht. Es konnte gezeigt werden, dass DNMT1 eine dynamische Verteilung im Kern aufweist, die durch regulatorische Sequenzen zellzyklusabhängig gesteuert wird. Um die subnukleare Verteilung von DNMT1 während des Zellzyklus zu untersuchen, wurden RFP-Ligase Fusionsproteine hergestellt, die als Marker für die Identifikation von Zellzyklusstadien in lebenden Zellen dienen. Verschiedene, mit GFP fusionierte DNMT1 Mutanten wurden zusammen mit RFP-Ligase exprimiert und über einen ganzen Zellzyklus hinweg mit 4-dimensionaler Lebendzellmikroskopie verfolgt. Die PBD (PCNA-Bindungsdomäne) bewirkt die Lokalisierung von DNMT1 an RF während der S-Phase, und die TS (targeting sequence) vermittelt die Retention von DNMT1 an spät replizierendem Heterochromatin von der späten S- bis zur frühen G1-Phase. Im Gegensatz dazu scheint die PBHD (Polybromohomologiedomäne) für die Freisetzung von DNMT1 von perizentrischen Regionen während der G1-Phase notwendig zu sein. Eine Überexpression der TS zu Störung dieser Assoziation, senkt die Überlebensrate der Zellen und fördert die Bildung von Mikronuklei sowie die Verschmelzung von zentromerem Heterochromatin. Diese Ergebnisse zeigen eine neue Funktion für die TS bei der Assoziation von DNMT1 mit perizentrischem Heterochromatin von der später S- über die G2-Phase bis hin zur Mitose, die eine wichtige Voraussetzung für die Erhaltung der DNA-Methylierung und Heterochromatinstruktur und -funktion ist. Datenbankanalysen zeigten, dass es sich bei der TS um eine einzigartige Domäne innerhalb der DNMT1 Proteinfamilie handelt. Innerhalb der DNMT1 Familie besitzen nur die DNMT1 Proteine der Metazoen die PBD. Das lässt vermuten, dass die Verknüpfung von Beibehaltung der DNA Methylierung mit der DNA Replikation nur in Metazoen auftritt, während in Pflanzen und Pilzen alternative Mechanismen zur Aufrechterhaltung des Methylierungsmusters, wahrscheinlich vermittelt durch die TS, zur Anwendung kommen. Die evolutionäre Konservierung von Mechanismen, zur Assoziation von Proteine mit RF in Säugerzellen, wurde durch die Analyse der Säugerproteine PCNA, DNA Ligase I und DNMT1 in Drosophila-zellen direkt getestet. Von allen untersuchten Proteinen assoziiert nur PCNA mit RF, während die anderen nur eine diffuse Verteilung innerhalb des Kerns zeigten, obwohl sie eine funktionale PBD enthalten. Überraschenderweise assoziierte auch die Drosophila DNA Ligase I in Säugerzellen nicht aber in Drosophila-zellen mit RF. Diese Ergebnisse weisen auf Unterschiede in der Dynamik und dem Aufbau der Replikationsmaschinerie in diesen entfernt verwandten Organismen hin, was mit der Vergrösserung und höheren Komplexität des Säugergenoms korreliert. / DNA methylation constitutes an essential epigenetic mark controlling chromatin organization and gene regulation in higher eucaryotes, which has to be duplicated together with the genetic information at every cell division cycle. In mammals duplication of DNA methylation is mediated by DNA methyltransferase-1 (DNMT1). It associates with sites of nuclear DNA replication, called replication foci (RF), and thereby couples maintenance of DNA methylation to DNA duplication. In this work, we have analyzed the role of regulatory sequences in the N-terminal domain of DNMT1 in controlling its subnuclear localization throughout the cell cycle, and the evolutionary conservation of these sequences and of the mechanisms that mediate association of proteins with RF. We provide evidence that DNMT1 shows dynamic subnuclear distribution that is controlled by the regulatory sequences depending on the cell cycle stage. To determine the subnuclear distribution of DNMT1 throughout the cell cycle, an RFP-Ligase fusion protein was developed as a marker that allows identification of the cell cycle stage in live cells. Various DNMT1 mutants fused to GFP were coexpressed with RFP-Ligase and imaged by 4-dimensional live cell microscopy during an entire cell cycle. The PBD (PCNA binding domain) drives the localization of DNMT1 at RF throughout S phase and the TS (targeting sequence) mediates retention of DNMT1 only at the late replicating pericentric heterochromatin from late-S phase until early-G1. In contrast, the PBHD (polybromo homology domain) seems to be required for unloading DNMT1 from the pericentric regions in G1. Overexpression of the TS to interfere with this association lowers cell viability and induces the formation of micronuclei and coalescence of centromeric heterochromatin. These results bring forth a novel function of the TS in mediating association of DNMT1 with pericentric heterochromatin from late-S phase through G2 until mitosis, which is important for maintenance of DNA methylation, and heterochromatin structure and function. Database searches indicate that the TS is a domain unique to the DNMT1 family of proteins. Amongst the DNMT1 family, only the metazoan DNMT1 proteins have the PBD. This suggests that coupling of maintenance of DNA methylation with DNA replication occurs only in metazoans, while plants and fungi have alternative mechanisms that maintain DNA methylation patterns, probably mediated by the TS. The evolutionary conservation of the mechanisms by which proteins associate with RF in mammalian cells was directly tested by analyzing the ability of mammalian replication proteins PCNA and DNA Ligase I as well as DNMT1 to associate with RF in Drosophila cells. Of all the proteins tested, only PCNA associated with RF while the others showed diffused nuclear distribution although they contain a functional PBD. Surprisingly, Drosophila DNA Ligase I associates with RF in mammalian but not in Drosophila cells. These results suggest differences in the dynamics and organization of the replication machinery in these distantly related organisms, which correlates with the increased size and complexity of mammalian genomes.
|
Page generated in 0.0294 seconds