1 |
Assembly and operation of a single stranded DNA catenaneŠlikas, Justinas January 2017 (has links)
The creation of molecular machines has been one of the goals of modern nanotechnology for a few decades. Such machines can be assembled from small molecules, as well as DNA. Of particular interest are mechanically interlocked nanoconstructs – catenanes and rotaxanes. These structures offer developments such as nanoswitches and rotational motors. DNA nanotechnology has produced numerous systems that consist of catenanes that could perform programmable switching and stimuli-responsive behaviour, as well as switching between stations in a semi-autonomous, rotary, motor-like behaviour. Energy transduction and the speed of such Brownian ratchet motors are negligible when compared to natural enzymatic activity. Bridging the gap between enzymology and structural DNA nanotechnology, we propose a method to assemble and operate a prototype system of fully complementary interlocked ssDNA rings that can roll against each other as a pair of gears with a ratio 1:2. The directionality and force is proposed to be generated by a strand-displacing polymerase enzyme performing a rolling circle amplification reaction on one of the members of this catenane, generating torque. Computer modelling of this system using oxDNA script package has been carried out, enabling both the topological visualisation and structural inquiry into the system prior to experimental development. Variations to the system such as changing the overall size, gearing ratio and developments towards integration into larger assemblies have also been described and are discussed in detail. Several experimental assembly strategies are described, together with experimental evidence of their outcomes. A method for operation of the single-stranded DNA catenane as a pair of continuously rolling gears has been investigated using strand displacing polymerases. Applications and suggestions for future developments is provided, addressing integration into complex systems. Additional methods of assembly and operation are discussed and compared.
|
2 |
Actuation of DNA cages and their potential biological applicationsEntwistle, Ngai Mun Aiman January 2015 (has links)
DNA cages are polyhedra self-assembled from synthetic oligonucleotides in a one-pot process. The main system described in this thesis is a reconfigurable, wire-framed DNA tetrahedron in nanometre-scale. On one of its vertices this tetrahedron has an overhang that can hybridise with a specific sequence of nucleic acids and open the cage. We describe the design of a reconfigurable cage that remained closed under physiological conditions and only opened in the presence of an appropriate signal in solution. Fluorescence techniques were employed to distinguish the open and closed states of the cage. We used flow cytometry and confocal microscopy to successfully established the open and closed states of the cage inside live cultured mammalian cells. Further experiments revealed that the DNA cage could be opened by a separately transfected signalling strand. Hybridisation between two separately transfected systems was possible. The DNA cage was then simplified to a DNA duplex so that the intracellular interactions between the two nucleic acids systems could be studied more efficiently. Microscopy images showed that the interaction occurred in membrane-bound compartments. We describe an investigation into the use of various cellular RNAs, including full-length mRNA and tRNA-RNA fusion, to actuate the DNA cages. Choosing an appropriate cellular opening signal remains a challenge. Analysis showed that bulky cellular RNA experienced steric hindrance with the rigid DNA cage. Finally, other potential biological applications of DNA cages, such as using DNA nanostructures as the carriers for genetic therapeutic agents, were also presented.
|
3 |
Crystalline frameworks self-assembled from amphiphilic DNA nanostructuresBrady, Ryan January 2019 (has links)
Many emerging technologies would greatly benefit from reliable methods for the production of functional materials with well-defined 3D nanoscale structure. Conceptually, approaches to produce such architectures are divided into two broad classes; top down and bottom up manufacture. In the top down approach, nanoscale structure is created through the controlled removal of material from a bulk starting object. Top down methods have a proven record of reliability in the fabrication of extended two dimensional arrays with fine control over nanoscale features. However, such approaches become increasingly cumbersome when attempting to define structure in three dimensions rather than two. Bottom up methods promise a more reliable route to the formation of such materials. Here, molecular scale building units self-assemble to form a desired structure, driven by pre-defined interactions between individual motifs. Due to the highly specific molecular recognition properties of nucleic acids, along with their relatively simple synthesis and wide range of potential chemical modifications, DNA nanotechnology is now regarded as a prime route for the bottom up fabrication of nanostructured materials. However, current approaches to the formation of designed 3D DNA crystals are complicated by the difficulties in designing sub-units able to assemble in a predictable fashion over length-scales orders of magnitude larger than themselves. Amphiphiles are able to self-assemble into a variety of 3D crystalline phases driven by the frustrated micro-phase separation of hydrophobic and hydrophilic domains, with the structural properties reliant primarily on overall topology of the molecules rather than their exact chemical and geometrical features. Although the mechanism underlying amphiphile self-assembly is robust, it inherently limits control over the fine-scale structural details. This thesis reports on a new class of self-assembling DNA motifs; amphiphilic cholesterol-functionalised DNA nanostars, \emph {C-stars}. C-stars combine key advantages of all-DNA motifs and conventional amphiphilic molecules -- allowing for the preparation of expanded crystalline frameworks with tunable properties and embedded functionality.
|
4 |
DNA Nanostructures as Programmable Biomolecular Scaffolds for Enzymatic SystemsJanuary 2016 (has links)
abstract: Nature is a master at organizing biomolecules in all intracellular processes, and researchers have conducted extensive research to understand the way enzymes interact with each other through spatial and orientation positioning, substrate channeling, compartmentalization, and more.
DNA nanostructures of high programmability and complexity provide excellent scaffolds to arrange multiple molecular/macromolecular components at nanometer scale to construct interactive biomolecular complexes and networks. Due to the sequence specificity at different positions of the DNA origami nanostructures, spatially addressable molecular pegboard with a resolution of several nm (less than 10 nm) can be achieved. So far, DNA nanostructures can be used to build nanodevices ranging from in vitro small molecule biosensing to sophisticated in vivo therapeutic drug delivery systems and multi-enzyme networks.
This thesis focuses on how to use DNA nanostructures as programmable biomolecular scaffolds to arranges enzymatic systems. Presented here are a series of studies toward this goal. First, we survey approaches used to generate protein-DNA conjugates and the use of structural DNA nanotechnology to engineer rationally designed nanostructures. Second, novel strategies for positioning enzymes on DNA nanoscaffolds has been developed and optimized, including site-specific/ non site-specific protein-DNA conjugation, purification and characterization. Third, an artificial swinging arm enzyme-DNA complex has been developed to mimic substrate channeling process. Finally, we extended to build a artificial 2D multi-enzyme network. / Dissertation/Thesis / Doctoral Dissertation Biochemistry 2016
|
5 |
Thermodynamics and Kinetics of DNA Nanostructure AssemblyJanuary 2011 (has links)
abstract: ABSTRACT The unique structural features of deoxyribonucleic acid (DNA) that are of considerable biological interest also make it a valuable engineering material. Perhaps the most useful property of DNA for molecular engineering is its ability to self-assemble into predictable, double helical secondary structures. These interactions are exploited to design a variety of DNA nanostructures, which can be organized into both discrete and periodic structures. This dissertation focuses on studying the dynamic behavior of DNA nanostructure recognition processes. The thermodynamics and kinetics of nanostructure binding are evaluated, with the intention of improving our ability to understand and control their assembly. Presented here are a series of studies toward this goal. First, multi-helical DNA nanostructures were used to investigate how the valency and arrangement of the connections between DNA nanostructures affect super-structure formation. The study revealed that both the number and the relative position of connections play a significant role in the stability of the final assembly. Next, several DNA nanostructures were designed to gain insight into how small changes to the nanostructure scaffolds, intended to vary their conformational flexibility, would affect their association equilibrium. This approach yielded quantitative information about the roles of enthalpy and entropy in the affinity of polyvalent DNA nanostructure interactions, which exhibit an intriguing compensating effect. Finally, a multi-helical DNA nanostructure was used as a model `chip' for the detection of a single stranded DNA target. The results revealed that the rate constant of hybridization is strongly dominated by a rate-limiting nucleation step. / Dissertation/Thesis / Ph.D. Chemistry 2011
|
6 |
DNA Directed Self-assembly of Plasmonic NanoparticlesJanuary 2012 (has links)
abstract: Deoxyribonucleic acid (DNA), a biopolymer well known for its role in preserving genetic information in biology, is now drawing great deal of interest from material scientists. Ease of synthesis, predictable molecular recognition via Watson-Crick base pairing, vast numbers of available chemical modifications, and intrinsic nanoscale size makes DNA a suitable material for the construction of a plethora of nanostructures that can be used as scaffold to organize functional molecules with nanometer precision. This dissertation focuses on DNA-directed organization of metallic nanoparticles into well-defined, discrete structures and using them to study photonic interaction between fluorophore and metal particle. Presented here are a series of studies toward this goal. First, a novel and robust strategy of DNA functionalized silver nanoparticles (AgNPs) was developed and DNA functionalized AgNPs were employed for the organization of discrete well-defined dimeric and trimeric structures using a DNA triangular origami scaffold. Assembly of 1:1 silver nanoparticle and gold nanoparticle heterodimer has also been demonstrated using the same approach. Next, the triangular origami structures were used to co-assemble gold nanoparticles (AuNPs) and fluorophores to study the distance dependent and nanogap dependencies of the photonic interactions between them. These interactions were found to be consistent with the full electrodynamic simulations. Further, a gold nanorod (AuNR), an anisotropic nanoparticle was assembled into well-defined dimeric structures with predefined inter-rod angles. These dimeric structures exhibited unique optical properties compared to single AuNR that was consistent with the theoretical calculations. Fabrication of otherwise difficult to achieve 1:1 AuNP- AuNR hetero dimer, where the AuNP can be selectively placed at the end-on or side-on positions of anisotropic AuNR has also been shown. Finally, a click chemistry based approach was developed to organize sugar modified DNA on a particular arm of a DNA origami triangle and used them for site-selective immobilization of small AgNPs. / Dissertation/Thesis / Ph.D. Chemistry 2012
|
7 |
Functional and Regulatory Biomolecular Networks Organized by DNA NanostructuresJanuary 2013 (has links)
abstract: DNA has recently emerged as an extremely promising material to organize molecules on nanoscale. The reliability of base recognition, self-assembling behavior, and attractive structural properties of DNA are of unparalleled value in systems of this size. DNA scaffolds have already been used to organize a variety of molecules including nanoparticles and proteins. New protein-DNA bio-conjugation chemistries make it possible to precisely position proteins and other biomolecules on underlying DNA scaffolds, generating multi-biomolecule pathways with the ability to modulate inter-molecular interactions and the local environment. This dissertation focuses on studying the application of using DNA nanostructure to direct the self-assembly of other biomolecular networks to translate biochemical pathways to non-cellular environments. Presented here are a series of studies toward this application. First, a novel strategy utilized DNA origami as a scaffold to arrange spherical virus capsids into one-dimensional arrays with precise nanoscale positioning. This hierarchical self-assembly allows us to position the virus particles with unprecedented control and allows the future construction of integrated multi-component systems from biological scaffolds using the power of rationally engineered DNA nanostructures. Next, discrete glucose oxidase (GOx)/ horseradish peroxidase (HRP) enzyme pairs were organized on DNA origami tiles with controlled interenzyme spacing and position. This study revealed two different distance-dependent kinetic processes associated with the assembled enzyme pairs. Finally, a tweezer-like DNA nanodevice was designed and constructed to actuate the activity of an enzyme/cofactor pair. Using this approach, several cycles of externally controlled enzyme inhibition and activation were successfully demonstrated. This principle of responsive enzyme nanodevices may be used to regulate other types of enzymes and to introduce feedback or feed-forward control loops. / Dissertation/Thesis / Ph.D. Biochemistry 2013
|
8 |
Programmed DNA Self-Assembly and Logic CircuitsJanuary 2014 (has links)
abstract: DNA is a unique, highly programmable and addressable biomolecule. Due to its reliable and predictable base recognition behavior, uniform structural properties, and extraordinary stability, DNA molecules are desirable substrates for biological computation and nanotechnology. The field of DNA computation has gained considerable attention due to the possibility of exploiting the massive parallelism that is inherent in natural systems to solve computational problems. This dissertation focuses on building novel types of computational DNA systems based on both DNA reaction networks and DNA nanotechnology. A series of related research projects are presented here. First, a novel, three-input majority logic gate based on DNA strand displacement reactions was constructed. Here, the three inputs in the majority gate have equal priority, and the output will be true if any two of the inputs are true. We subsequently designed and realized a complex, 5-input majority logic gate. By controlling two of the five inputs, the complex gate is capable of realizing every combination of OR and AND gates of the other 3 inputs. Next, we constructed a half adder, which is a basic arithmetic unit, from DNA strand operated XOR and AND gates. The aim of these two projects was to develop novel types of DNA logic gates to enrich the DNA computation toolbox, and to examine plausible ways to implement large scale DNA logic circuits. The third project utilized a two dimensional DNA origami frame shaped structure with a hollow interior where DNA hybridization seeds were selectively positioned to control the assembly of small DNA tile building blocks. The small DNA tiles were directed to fill the hollow interior of the DNA origami frame, guided through sticky end interactions at prescribed positions. This research shed light on the fundamental behavior of DNA based self-assembling systems, and provided the information necessary to build programmed nanodisplays based on the self-assembly of DNA. / Dissertation/Thesis / Ph.D. Chemistry 2014
|
9 |
Controllable cell delivery and chromatin structure observation using DNA nanotechnology / DNAナノテクノロジーを用いた細胞制御法の開拓とクロマチン構造の観察FENG, YIHONG 23 September 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第22719号 / 理博第4628号 / 新制||理||1665(附属図書館) / 京都大学大学院理学研究科化学専攻 / (主査)教授 杉山 弘, 教授 深井 周也, 教授 秋山 芳展 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
|
10 |
DNA Signal Induced Fusion And Aggregation Behaviors of Synthetic CellsHengming Qiu (9748970) 15 December 2020 (has links)
This thesis investigates the use of engineered DNA to program fusion and aggregation behaviors of artificial cells, mimicking biological cells and their important functions. To achieve this goal, we construct synthetic cells from engineered lipids and DNA to recognize and process intercellular signals.<div><br></div><div>Cell fusion is regulated by snap receptor (SNARE) proteins in mammalian cells. The zippering of SNARE proteins exerts forces to the adjacent cell membrane and induces membrane fusion. The hybridization of membrane anchored DNA can induce fusion in a similar way. The advantage of using DNA as a fusion signal is that oligonucleotides are much easier to engineer and control. In this study, we construct two types of small vesicles decorated with DNA oligonucleotides and demonstrate their fusion using programmable DNA base-pairing. Fluorescent probes are used to measure fusion events. The experiment advances our understanding of the dynamic vesicle fusion behavior.<br></div><div><br></div><div>Cell aggregation is a complex behavior that is closely associated to the differentiation, migration, and viability of biological cells. An effort to create synthetic analogs could lead to considerable advances in cell physiology and biophysics. Rendering and modulating such a dynamic artificial cell system require mechanisms for receiving, transducing, and transmitting intercellular signals, yet effective tools are limited at present. Here we construct synthetic cells and show their programmable aggregation behaviors using DNA oligonucleotides as a signaling molecule. The synthetic cells have transmembrane DNA origami that are used to recognize and process intercellular signals. We demonstrate that multiple small vesicles aggregate onto a giant vesicle after a transduction of external DNA signals by an intracellular enzyme, and that the small vesicles dissociate when receiving ‘release’ signals.<br></div><div><br></div><div>We envision that this thesis will provide a new platform for building programmable synthetic protocells capable of chemical communication and coordination. <br></div>
|
Page generated in 0.0535 seconds