• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 54
  • 8
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 85
  • 85
  • 85
  • 49
  • 48
  • 48
  • 11
  • 10
  • 10
  • 10
  • 10
  • 9
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

The role of nuclear factor-kappa B (NF-kB) in the regulation of lung inflammation

Everhart, Michael Brett. January 2004 (has links)
Thesis (Ph. D. in Cell and Developmental Biology)--Vanderbilt University, Dec. 2004. / Title from title screen. Includes bibliographical references.
22

Structural Studies Of Mycobacterial Uracil-DNA Glycosylase (Ung) And Single-Stranded DNA Binding Protein (SSB)

Kaushal, Prem Singh 04 1900 (has links) (PDF)
For survival and successful propagation, every organism has to maintain the genomic integrity of the cell. The information content, in the form of nucleotide bases, is constantly threatened by endogenous agents and environmental pollutants. In particular, pathogenic mycobacteria are constantly exposed to DNA-damaging assaults such as reactive oxygen species (ROS) and reactive nitrogen intermediate (RNI), in their habitat which is inside host macrophage. In addition, the genome of Mycobacterium tuberculosis makes it more susceptible for guanine oxidation and cytosine deamination as it is G-C rich. Therefore DNA repair mechanisms are extremely important for the mycobacterium. An important enzyme involved in DNA repair is uracil-DNA glycosylase (Ung). To access the genomic information, during repair as well as DNA replication and recombination, dsDNA must unwind to form single stranded (ss) intermediates. ssDNA is more prone to chemical and nuclease attacks that can produce breaks or lesions and can also inappropriately self associate. In order to preserve ssDNA intermediates, cells have evolved a specialized class of ssDNA-binding proteins (SSB) that associate with ssDNA with high affinity. As part of a major programme on mycobacterial proteins in this laboratory, structural studies on mycobacterial uracil-DNA glycosylase (Ung) and single-stranded DNA binding protein (SSB) have been carried out. The structures were solved using the well-established techniques of protein X-ray crystallography. The hanging drop vapour diffusion and microbatch methods were used for crystallization in all cases. X-ray intensity data were collected on a MAR Research imaging plate mounted on a Rigaku RU200 X-ray generator. The data were processed using the HKL program suite. The structures were solved by the molecular replacement method using the program PHASER and AMoRe. Structure refinements were carried out using the programs CNS and REFMAC. Model building was carried out using COOT. PROCHECK, ALIGN, INSIGHT and NACCESS were used for structure validation and analysis of the refined structures. MD simulations were performed using the software package GROMACS v 3.3.1. Uracil-DNA glycosylase (UNG), a repair enzyme involved in the excision of uracil from DNA, from mycobacteria differs from UNGs from other sources, particularly in the sequence in the catalytically important loops. The structure of the enzyme from Mycobacterium tuberculosis (MtUng) in complex with a proteinaceous inhibitor (Ugi) has been determined by X-ray analysis of a crystal containing seven crystallographically independent copies of the complex. This structure provides the first geometric characterization of a mycobacterial UNG. A comparison of the structure with those of other UNG proteins of known structure shows that a central core region of the molecule is relatively invariant in structure and sequence, while the N- and C-terminal tails exhibit high variability. The tails are probably important in folding and stability. The mycobacterial enzyme exhibits differences in UNG-Ugi interactions compared with those involving UNG from other sources. The MtUng-DNA complex modelled on the basis of the known structure of the complex involving the human enzyme indicates a domain closure in the enzyme when binding to DNA. The binding involves a larger burial of surface area than is observed in binding by human UNG. The DNA-binding site of MtUng is characterized by the presence of a higher proportion of arginyl residues than is found in the binding site of any other UNG of known structure. In addition to the electrostatic effects produced by the arginyl residues, the hydrogen bonds in which they are involved compensate for the loss of some interactions arising from changes in amino-acid residues, particularly in the catalytic loops. The results arising from the present investigation represent unique features of the structure and interaction of mycobacterial Ungs. To gain further insights, the structure of Mycobacterium tuberculosis Ung (MtUng) in its free form was also determined. Comparison with appropriate structures indicate that the two domain enzyme slightly closes up when binding to DNA while it slightly opens up when binding to its proteinaceous inhibitor Ugi. The structural changes on complexation in the catalytic loops reflect the special features of their structure in the mycobacterial protein. A comparative analysis of available sequences of the enzyme from different sources indicates high conservation of amino acid residues in the catalytic loops. The uracil binding pocket in the structure is occupied by a citrate ion. The interactions of the citrate ion with the protein mimic those of uracil in addition to providing insights into other possible interactions that inhibitors could be involved in. SSB is an essential accessory protein required during DNA replication, repair and recombination, and various other DNA transactions. Eubacteral single stranded DNA binding (SSB) proteins constitute an extensively studied family of proteins. The variability in the quaternary association in these tetrameric proteins was first demonstrated through the X-ray analysis of the crystal structure of Mycobacterium tuberculosis SSB (MtSSB) and Mycobacterium smegmatis (MsSSB) in this laboratory. Subsequent studies on these proteins elsewhere have further explored this variability, but attention was solely concentrated on the variability in the relative orientation of the two dimers that constitute the tetramer. Furthermore, the effect of this variability on the properties of the tetrameric molecule was not adequately addressed. In order to further explore this variability and strengthen structural information on mycobacterial SSBs in particular, and on SSB proteins in general, the crystal structures of two forms of Mycobacterium leprae single stranded DNA-binding protein (MlSSB) has been determined. Comparison of the structures with other eubacterial SSB structures indicates considerable variation in their quaternary association although the DNA binding domains in all of them exhibit the same OB-fold. This variation has no linear correlation with sequence variation, but it appears to correlate well with variation in protein stability. Molecular dynamics simulations have been carried out on tetrameric molecules derived from the two forms and the prototype E. coli SSB and the individual subunits of both the proteins. The X-ray studies and molecular dynamics simulations together yield information on the relatively rigid and flexible regions of the molecule and the effect of oligomerization on flexibility. The simulations provide insights into the changes in the subunit structure on oligomerization. They also provide insights into the stability and time evolution of the hydrogen bonds/water-bridges that connect two pairs of monomers in the tetramer. In continuation of our effort to understand structure-function relationships of mycobacterial SSBs, the structure of MsSSB complexed with a 31-mer polydeoxy-cytidine single stranded DNA (ssDNA) was determined. The mode of ssDNA binding in the MsSSB is different from the modes in the known structures of similar complexes of the proteins from E. coli (EcSSB) and Helicobacter pylori (HpSSB). The modes in the EcSSB and HpSSB also exhibit considerable differences between them. A comparison of the three structures reveals the promiscuity of DNA-binding to SSBs from different species in terms of symmetry and the path followed by the bound DNA chain. It also reveals commonalities within the diversity. The regions of the protein molecule involved in DNA-binding and the nature of the residues which interact with the DNA, exhibit substantial similarities. The regions which exhibit similarities are on the central core of the subunit which is unaffected by tetramerisation. The variable features of DNA binding are associated with the periphery of the subunit, which is involved in oligomerization. Thus, there is some correlation between variability in DNA-binding and the known variability in tetrameric association in SSBs. In addition to the work on Ung and SSB, the author was involved in X-ray studies on crystals of horse methemoglobin at different levels of hydration, which is described in the Appendix of the thesis. The crystal structure of high-salt horse methaemoglobin has been determined at environmental relative humidities (r.h.) of 88, 79, 75 and 66%. The molecule is in the R state in the native and the r.h. 88% crystals. At r.h.79% the molecule appears to move towards the R2 state. The crystal structure at r.h.66% is similar, but not identical, to that at r.h.75%. Thus variation in hydration leads to variation in the quaternary structure. Furthermore, partial dehydration appears to shift the structure from the R state to the R2 state. This observation is in agreement with the earlier conclusion that the changes in protein structure that accompany partial dehydration are similar to those that occur during protein action. A part of the work presented in the thesis has been reported in the following publications. 1. Singh, P., Talawar, R.K., Krishna, P.D., Varshney, U. & Vijayan, M. (2006). Overexpression, purification, crystallization and preliminary X-ray analysis of uracil N-glycosylase from Mycobacterium tuberculosis in complex with a proteinaceous inhibitor. Acta Crystallogr. F62, 1231-1234. 2. Kaushal, P.S., Talawar, R.K., Krishna, P.D., Varshney, U. & Vijayan, M. (2008). Unique features of the structure and interactions of mycobacterial uracil-DNA glycosylase: structure of a complex of the Mycobacterium tuberculosis enzyme in comparison with those from other sources. Acta Crystallogr. D64, 551-560. 3. Kaushal, P.S., Sankaranarayanan, R. & Vijayan, M. (2008). Water-mediated variability in the structure of relaxed-state haemoglobin. Acta Crystallogr. F64, 463-469.
23

Altered proteins in the aging brain

Elobeid, Adila January 2016 (has links)
The classification of neurodegenerative disorders is based on the major component of the protein aggregates in the brain. The most common altered proteins associated with neurodegeneration are Hyperphosphorylated tau (HPt), beta amyloid (Aβ), alpha-synclein (αS) and transactive response DNA binding protein 43 (TDP43). In this study we assessed the incidence and the neuroanatomical distribution of proteins associated with neurodegeneration in the brain tissue of cognitively unimpaired subjects. We demonstrated the early involvement of the Locus Coeruleus (LC) with HPt pathology in cognitively unimpaired mid aged subjects, a finding which supports the notion that LC is an initiation site of HPt pathology. This may suggest that development of clinical assessment techniques and radiological investigations reflecting early LC alterations may help in identifying subjects with early stages of neurodegeneration. Furthermore, we studied a large cohort of cognitively unimpaired subjects with age at death ≥50 years and we applied the National Institute on Aging –Alzheimer’s disease (AD) Association (NIA-AA) guidelines for the assessment of AD related neuropathological changes. Interestingly, a considerable percentage of the subjects were classified as having an intermediate level of AD pathology. We also showed that the altered proteins;  HPt , Aβ, αS, and TDP43 are frequently seen in the brain of cognitively unimpaired subjects with age at death ≥50 years, the incidence of these proteins increased significantly with age. This finding suggests that neurodegeneration has to be extensive to cause functional disturbance and clinical symptoms. Moreover, we investigated the correlation between AD related pathology in cortical biopsies, the AD / cerebrospinal fluid (CSF) biomarkers and the Mini Mental State examination (MMSE) scores in a cohort of idiopathic Normal Pressure Hydrocephalus (iNPH) patients. We demonstrated that AD/ CSF biomarkers and MMSE scores reflect AD pathology in the cortical biopsies obtained from iNPH patients.  In conclusion, this study shows that the altered proteins associated with neurodegeneration are frequently seen in the brain tissue of cognitively unimpaired aged subjects. This fact should be considered while developing diagnostic biomarkers for identification of subjects at early stages of the disease, in order to introduce therapeutic intervention prior to the occurrence of significant cognitive impairment.
24

Helicase-SSB Interactions In Recombination-Dependent DNA Repair and Replication

Jordan, Christian 01 January 2014 (has links)
Dda, one of three helicases encoded by bacteriophage T4, has been well- characterized biochemically but its biological role remains unclear. It is thought to be involved in origin-dependent replication, recombination-dependent replication, anti- recombination, recombination repair, as well as in replication fork progression past template-bound nucleosomes and RNA polymerase. One of the proteins that most strongly interacts with Dda, Gp32, is the only single-stranded DNA binding protein (SSB) encoded by T4, is essential for DNA replication, recombination, and repair. Previous studies have shown that Gp32 is essential for Dda stimulation of replication fork progression. Our studies show that interactions between Dda and Gp32 play a critical role in regulating replication fork restart during recombination repair. When the leading strand polymerase stalls at a site of ssDNA damage and the lagging strand machinery continues, Gp32 binds the resulting ssDNA gap ahead of the stalled leading strand polymerase. We found that a Gp32 cluster on leading strand ssDNA blocks Dda loading on the lagging strand ssDNA, blocks stimulation of fork progression by Dda, and stimulates Dda to displace the stalled polymerase and the 3' end of the daughter strand. This unwinding generates conditions necessary for polymerase template switching in order to regress the DNA damage-stalled replication fork. Helicase trafficking by Gp32 could play a role in preventing premature fork progression until the events required for error-free translesion DNA synthesis have taken place. Interestingly, we found that Dda helicase activity is strongly stimulated by the N-terminal deletion mutant Gp32-B, suggesting the N-terminal truncation to generate Gp32-B reveals a cryptic helicase stimulatory activity of Gp32 that may be revealed in the context of a moving polymerase, or through direct interactions of Gp32 with other replisome components. Additionally, our findings support a role for Dda-Gp32 interactions in double strand break (DSB) repair by homology-directed repair (HDR), which relies on homologous recombination and the formation of a displacement loop (D-loop) that can initiate DNA synthesis. We examined the D-loop unwinding activity of Dda, Gp41, and UvsW, the D-loop strand extension activity of Gp43 polymerase, and the effect of the helicases and their modulators on D-loop extension. Dda and UvsW, but not Gp41, catalyze D-loop invading strand by DNA unwinding. The relationship between Dda and Gp43 was modulated by the presence of Gp32. Dda D-loop unwinding competes with D- loop extension by Gp43 only in the presence of Gp32, resulting in a decreased frequency of invading strand extension when all three proteins are present. These data suggest Dda functions as an antirecombinase and negatively regulates the replicative extension of D- loops. Invading strand extension is observed in the presence of Dda, indicating that invading strand extension and unwinding can occur in a coordinated manner. The result is a translocating D-loop, called bubble migration synthesis, a hallmark of break-induced repair (BIR) and synthesis dependent strand annealing (SDSA). Gp41 did not unwind D- loops studied and may serve as a secondary helicase loaded subsequent to D-loop processing by Dda. Dda is proposed to be a mixed function helicase that can work both as an antirecombinase and to promote recombination-dependent DNA synthesis, consistent with the notion that Dda stimulates branch migration. These results have implications on the repair of ssDNA damage, DSB repair, and replication fork regulation, which are highly conserved processes sustained in all organisms.
25

Understanding two inhibitors of NF-κB: A20 and IκBβ

De, Arnab January 2014 (has links)
While prompt activation of NF-κB is essential for optimal immune response, it is equally important to terminate the response to avoid tissue damage and perhaps even death resulting from organ failure. This thesis describes two inhibitors of NF-κB, A20 and IκBβ. A20 is an essential inhibitor of NF-κB mediated inflammation as mice lacking A20 die from multi-organ inflammation and cachexia. Multiple biochemical approaches have suggested that A20 functions as a deubiquitinase by disassembling K63-linked regulatory ubiquitin chains from upstream adapter molecules like RIP1. To determine the contribution of the deubiquitinase role of A20 in downregulating NF-κB, we generated and characterized a knock-in mouse lacking the deubiquitinase activity of A20. However, we find that these mice display normal NF-κB activation and show no signs of inflammation. Our results suggest that the deubiquitinase activity of A20 is dispensable for downregulating NF-κB. The second part of this thesis unravels a new biological pathway mediated by IκBβ. Unlike IκBα, which functions solely as an inhibitor of NF-κB, IκBβ can both inhibit and activate NF-κB depending on the physiological context. We hypothesized that this may be because IκBβ (unlike IκBα ) exists in two forms, a constitutively phosphorylated form and an unphosphorylated form. Prior work from our group has demonstrated that hypophosphorylated IκBβ complexes with p65:cRel and mediates the expression of certain inflammatory genes like TNFα . We report here that Glycogen Synthase Kinase 3β (GSK-3β ) interacts with and phosphorylates IκBβ at Serine-346. This phosphorylation masks the NLS of p65 in the phospho-IκBβ:p65:cRel complex, thereby sequestering the complex in the cytoplasm and mediating the anti-inflammatory role of IκBβ. We discovered a peptide that can inhibit this phosphorylation by abrogating the interaction between GSK-3β and IκBβ. Mice succumb to a sublethal dose of LPS when injected with this peptide because of increased production of TNFα (but not IL-6); thereby demonstrating the inflammatory role of unphosphorylated IκBβ in upregulating specific genes like TNFα. We propose a signaling model by which phosphorylation by GSK-3β can regulate the functions of IκBβ in response to LPS.
26

The alternative NF-kB pathway in mature B cell development

De Silva, Nilushi January 2015 (has links)
The nuclear factor-kB (NF-kB) signaling cascade is comprised of two branches, the canonical and alternative NF-kB pathways. Signaling through the alternative NF-kB pathway culminates in the activation of the downstream transcription factor subunits, RELB and NF-kB2. The biological roles of RELB and NF-kB2 within the B cell lineage have been obscured in constitutional knockout mice by the diverse functions of these subunits in non-B cell types. To overcome these limitations, conditional alleles were generated to investigate the roles of RELB and NF-kB2 in B cell development. These alleles allowed the identification of complex functional requirements for RELB and/or NF-kB2 in naïve B cells, germinal center (GC) B cells and plasma cells (PCs). These functional requirements may have implications for B cell malignancies that display mutations that constitutively activate the alternative NF-kB pathway. A large body of work has demonstrated that B cell activating factor (BAFF) signaling is critical for the maintenance of mature B cells. However, the contribution of the alternative NF-kB subunits that are activated downstream of BAFF remained unclear, especially in regards to their specific target genes. We have identified critical, B cell-intrinsic roles for RELB and NF-kB2 in the maintenance of mature B cells. In response to BAFF, these subunits were found to control the expression of anti-apoptotic genes, genes that ensure correct positioning within the B cell niche, and genes involved in promoting B–T cell interactions that allow effective antigen-mediated activation. During the GC B cell reaction, light zone (LZ) B cells undergo affinity-based selection mediated by T follicular helper (Tfh) cells. A subset of LZ B cells show activation of the NF-kB signaling cascade, suggesting a critical role for NF-kB in the selection of high-affinity GC B cells. We here report that GC B cell development occurred normally in mice with conditional deletion of either relb (RELB) or nfkb2 (NF-kB2) in GC B cells. In contrast, the simultaneous ablation of both subunits caused rapid involution of established GCs, similar to what has been observed for ablation of the canonical NF-kB transcription factor subunit c-REL. Intriguingly, RNA-sequencing analysis of relb/nfkb2-deleted GC B cells revealed no overlap between the genes controlled by RELB/p52 and c-REL within GC B cells. This suggests that signaling through the separate NF-kB pathways in GC B cells results in the expression of different biological programs that are independently required for the maintenance of the GC reaction. In addition, we observed that human PCs and PC precursors within the LZ showed high protein levels of NF-kB2 compared to surrounding lymphocytes, suggesting a biological role for this subunit in PCs. Indeed, ablation of nfkb2 alone in GC B cells led to a dramatic decrease in antigen-specific serum IgG1 and antigen-specific IgG1-secreting cells. Interestingly however, the mice developed normal frequencies of PCs, suggesting a role for NF-kB2 in PC physiology rather than differentiation.
27

NF-kB- and mitochondria-linked signaling events that contribute to TNFa action in deferring physiological and chemotherapeutic drug-induced apoptosis in macrophages

Lo, Susan Z. Y. January 2008 (has links)
TNF defers apoptosis in macrophages undergoing spontaneous or pharmacologically (thapsigargin, ceramide, CCCP, etoposide or cisplatin)-induced apoptosis, as determined by measurements of caspase-3 activity and annexin-V staining (Chapter 2). The action requires TNF interaction with TNF-R1, not TNF-R2. Survival is uniquely reliant on the activity of the NF-B signaling pathway, and does not require activities arising from the PI3K/Akt, JNK, ERK, p38 MAP kinase or iNOS pathways (Chapter 3). Further, the general anti-apoptotic property of TNF and its specific antagonism of CCCP-induced apoptosis led to the finding that TNF action prevents cytochrome c release. This protection is likely mediated through effects on components of the MPTP itself, as TNF exhibited functional redundancy with the pore inhibitor cyclosporin A, and did not modify upstream events that promote MPTP opening during apoptosis, namely ROS production, cytosolic Ca2+ increase, or a reduction of total ATP (Chapter 4). Subsequent experiments with the mRNA synthesis inhibitor, actinomycin D, and the translation inhibitor, cycloheximide revealed that the protein(s) responsible for TNF-induced survival was transcribed and translated within 1 hr. However, western analyses provided no convincing evidence of the involvement of Mn-SOD, cIAP-1, XIAP, Bcl-2 or A1 in TNF cytoprotection (Chapter 5). Rather, microarray experiments identified the consistent induction of an early response gene, pim-1, within 30 min of TNF exposure (Chapter 6). This result was verified at the protein level with a specific Pim-1 antibody. Evidence was also found for induction of the anti-apoptotic protein A20, but only at mRNA level. Parthenolide, wortmannin, SP600125, PD98059, SB203580 or L-NAME1 acted against TNF-induced Pim-1 expression in a pattern that exactly matched the effects of these inhibitors on TNF-induced survival. That is, only parthenolide-mediated inactivation of NF-B abolished TNF-induced induction of Pim-1. TNF also stimulated the rapid phosphorylation (inactivation) of the pro-apoptotic BH3-only protein, Bad at Ser112 in a manner sensitive to NF-B inhibition, but not PI3K/Akt, JNK, ERK or p38 MAP kinase inhibition (Chapter 7). As Bad is a known substrate of Pim-1 and Bad 1 Parthenolide, wortmannin, SP600125, PD98059 and SB203580 are inhibitors of the NF-B, PI3K/Akt, JNK, ERK and p38 MAP kinase pathways, respectively. L-NAME inhibits iNOS. NF-B- and mitochondria-linked signaling events that contribute to TNF action in deferring physiological and chemotherapeutic drug-induced apoptosis in macrophages ii phosphorylation occurred coincident with Pim-1 upregulation, it is likely that Pim-1 kinase activity mediates the inactivation of Bad. The overall data therefore supports a model in which TNF ligation of TNF-R1 at the cell surface results in intracellular NF- B activation, leading to the induction of Pim-1 mRNA and protein, and the ensuing phosphorylation of Bad. Inactivation of pro-apoptotic Bad increases the resistance threshold of mitochondria to apoptotic insults, thereby reducing the occurrence of mitochondrial permeability transition, cytochrome c release and subsequent caspase-3 activation.
28

The role of A20 in the regulation of NF-k[kappa]B and myeloid homeostasis /

Lee, Eric Grant. January 2003 (has links)
Thesis (Ph. D.)--University of Chicago, Committee on Immunology, June 2003. / Includes bibliographical references. Also available on the Internet.
29

New insights into the disease mechanisms of Duchenne muscular dystrophy through analyses of the dystrophin, I[kappa]B[beta], and CASK proteins

Gardner, Katherine Lynn, January 2006 (has links)
Thesis (Ph. D.)--Ohio State University, 2006. / Title from first page of PDF file. Includes bibliographical references (p. 147-163).
30

Effect of RU486, a progesterone antagonist, on uterine progesterone receptor, embryonic development and ovarian function during early pregnancy in pigs

Mathew, Daniel J., Lucy, Matthew C. Geisert, Rodney D. January 2009 (has links)
The entire thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file; a non-technical public abstract appears in the public.pdf file. Title from PDF of title page (University of Missouri--Columbia, viewed on December 29, 2009). Thesis advisor: Dr. Matthew C. Lucy and Rodney D. Geisert. Vita. Includes bibliographical references.

Page generated in 0.1307 seconds