• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Implementation of a Digital Radio Frequency Memory in a Xilinx Virtex-4 FPGA

Gustafsson, Kristian January 2005 (has links)
<p>Digital Radio Frequency Memory (DRFM) is a technique widely used by the defense industry in, for example, electronic countermeasure equipment for generating false radar targets. The purpose of the DRFM technique is to use high-speed sampling to digitally store and recreate radio frequency and microwave signals. At Saab Bofors Dynamics AB the technique is used, among others, in the Electronic Warfare Simulator (ELSI). The DRFM technique is implemented in a full-custom ASIC circuit that has been mounted on circuit boards in ELSI. Today, the progress in the programmable hardware field has made it possible to implement the DRFM design in a Field Programmable Gate Array (FPGA). The FPGA technology has many advantages over a full custom ASIC design.</p><p>Hence, the purpose of this master's thesis has been to develop a new DRFM design that can be implemented in an FPGA, using a hardware description language called VHDL. The method for this master's thesis has been to first establish a time plan and a requirement specification. After that, a design specification has been worked out based on the requirement specification. The two specifications have served as a basis for the development of the DRFM circuit. One of the requirements on the design was that the circuit should be able to communicate through an external Ethernet interface. A part of the work has, thus, been to review available external Ethernet modules on the market. The result is a DRFM design that has been tested through simulations. The tests shows that the design works as described in the design specification.</p>
2

Implementation of a Digital Radio Frequency Memory in a Xilinx Virtex-4 FPGA

Gustafsson, Kristian January 2005 (has links)
Digital Radio Frequency Memory (DRFM) is a technique widely used by the defense industry in, for example, electronic countermeasure equipment for generating false radar targets. The purpose of the DRFM technique is to use high-speed sampling to digitally store and recreate radio frequency and microwave signals. At Saab Bofors Dynamics AB the technique is used, among others, in the Electronic Warfare Simulator (ELSI). The DRFM technique is implemented in a full-custom ASIC circuit that has been mounted on circuit boards in ELSI. Today, the progress in the programmable hardware field has made it possible to implement the DRFM design in a Field Programmable Gate Array (FPGA). The FPGA technology has many advantages over a full custom ASIC design. Hence, the purpose of this master's thesis has been to develop a new DRFM design that can be implemented in an FPGA, using a hardware description language called VHDL. The method for this master's thesis has been to first establish a time plan and a requirement specification. After that, a design specification has been worked out based on the requirement specification. The two specifications have served as a basis for the development of the DRFM circuit. One of the requirements on the design was that the circuit should be able to communicate through an external Ethernet interface. A part of the work has, thus, been to review available external Ethernet modules on the market. The result is a DRFM design that has been tested through simulations. The tests shows that the design works as described in the design specification.
3

Electronic Protection Using Two Non-Coherent Marine Radars

Alanazi, Turki Mohammed J. 28 August 2018 (has links)
No description available.
4

Design of a channel board used in an electronic warfare target simulator

Andersson, Peter January 2006 (has links)
<p>A channel board was designed for a DRFM circuit. The DRFM is implemented in a Virtex-4 FPGA from Xilinx. In the future a similar channel board is intended to be used for target echo generation in ELSI which is an electronic warfare simulator at Saab Bofors Dynamics in Linköping.</p><p>Besides the DRFM circuit the channel board consists of analog-to-digital converters, digital-to-analog converters, Ethernet plug-in board with a microcontroller, voltage regulators, FPGA configuration memory, voltage amplifiers, current amplifiers, oscillator, buffers/drivers and bus transceivers. The sample rate is 200 MHz and LVDS signalling standard is used between the DRFM circuit and the converters.</p><p>The channel board has a JTAG interface which enables in-system programming of the FPGA. This implies that the DRFM can easily be redesigned. An external computer can manage the channel board via Ethernet. Software was developed for the microcontroller on the channel board and for the external computer. The function of the channel board is heavily dependent on the DRFM circuit.</p><p>The channel board design resulted in the assembly of a prototype circuit board. Measurements were performed in a lab and the channel board was approved to be integrated in ELSI for further tests.</p>
5

Design of a channel board used in an electronic warfare target simulator

Andersson, Peter January 2006 (has links)
A channel board was designed for a DRFM circuit. The DRFM is implemented in a Virtex-4 FPGA from Xilinx. In the future a similar channel board is intended to be used for target echo generation in ELSI which is an electronic warfare simulator at Saab Bofors Dynamics in Linköping. Besides the DRFM circuit the channel board consists of analog-to-digital converters, digital-to-analog converters, Ethernet plug-in board with a microcontroller, voltage regulators, FPGA configuration memory, voltage amplifiers, current amplifiers, oscillator, buffers/drivers and bus transceivers. The sample rate is 200 MHz and LVDS signalling standard is used between the DRFM circuit and the converters. The channel board has a JTAG interface which enables in-system programming of the FPGA. This implies that the DRFM can easily be redesigned. An external computer can manage the channel board via Ethernet. Software was developed for the microcontroller on the channel board and for the external computer. The function of the channel board is heavily dependent on the DRFM circuit. The channel board design resulted in the assembly of a prototype circuit board. Measurements were performed in a lab and the channel board was approved to be integrated in ELSI for further tests.
6

An Automated Approach to a 90-nm CMOS DRFM DSSM Circuit Design

Hopkins, Thomas A. 18 October 2010 (has links)
No description available.

Page generated in 0.0168 seconds